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Executive	Summary 
While	analysing	an	incident	that	involved	a	suspected	keylogger,	we	identified	a	malicious	library	
able	to	interact	with	a	virtual	file	system,	which	is	usually	the	sign	of	an	advanced	APT	actor.	This	
turned	out	to	be	a	malicious	loader	internally	named	‘Slingshot’,	part	of	a	new,	and	highly	
sophisticated	attack	platform	that	rivals	Project	Sauron	and	Regin	in	complexity. 

The	initial	loader	replaces	the	victim´s	legitimate	Windows	library	‘scesrv.dll’	with	a	malicious	one	of	
exactly	the	same	size.	Not	only	that,	it	interacts	with	several	other	modules	including	a	ring-0	loader,	
kernel-mode	network	sniffer,	own	base-independent	packer,	and	virtual	filesystem,	among	others.	 

While	for	most	victims	the	infection	vector	for	Slingshot	remains	unknown,	we	were	able	to	find	
several	cases	where	the	attackers	got	access	to	Mikrotik	routers	and	placed	a	component	
downloaded	by	Winbox	Loader,	a	management	suite	for	Mikrotik	routers.	In	turn,	this	infected	the	
administrator	of	the	router. 

We	believe	this	cluster	of	activity	started	in	at	least	2012	and	was	still	active	at	the	time	of	this	
analysis	(February	2018).	We	observed	almost	one	hundred	victims	in	the	following	countries:	
Kenya,	Yemen,	Libya,	Afghanistan,	Iraq,	Tanzania,	Jordan,	Mauritius,	Somalia,	Democratic	Republic	of	
the	Congo,	Turkey,	Sudan	and	United	Arab	Emirates. 

 
This	paper	in	a	nutshell: 
• Slingshot	is	a	new,	previously	unknown	cyber-espionage	platform	which	rivals	Project	Sauron	

and	Regin	in	complexity 
• Slingshot	has	been	active	since	at	least	2012	until	February	2018	 
• We	observed	almost	one	hundred	Slingshot	victims,	mainly	in	the	Middle	East	and	Africa 
• The	attackers	exploited	an	unknown	vulnerability	in	Mikrotik	routers	as	an	infection	vector 

 
Technical	Details 
 
During	the	analysis	of	anomalies	from	a	system	suspected	of	being	infected	with	a	keylogger,	we	
found	an	interesting	artifact.	This	system	had	a	DLL	called	‘scesrv.dll’	(this	same	name	is	used	by	a	
system	DLL)	containing	strings	that	seemed	related	to	Virtual	File	System	handling. 

This	was	indeed	a	patched	system	library,	loaded	by	services.exe	with	SYSTEM	privileges.	We	called	
it	Slingshot,	based	on	internal	strings. 

Slingshot	is	a	loader	that	uses	different	components	as	summarized	in	the	schema	below.	The	
following	sections	provide	a	technical	analysis	for	all	of	them. 



 
Slingshot 
Slingshot	is	a	loader	used	as	a	first	stager.	It	replaces	an	existing	system	DLL	with	a	malicious	one	of	
exactly	the	same	size.	We	noticed	that	the	attackers	replace	scesrv.dll	more	often	than	other	DLLs,	
but	in	some	cases	attackers	also	replaced	spoolsv.exe.	 

The	system	DLL	patching	is	one	of	the	most	technically	interesting	features	of	this	loader,	and	it	
works	as	follows: 

• Inserts	all	necessary	modules	into	the	victim’s	system	DLL	file,	compressing	part	of	the	original	
file	in	the	malware´s	data	section	to	retain	the	same	size. 

• Changes	the	entry	point,	pointing	to	one	of	the	added	loaders.	Loaders	are	written	in	the	
infected	DLL	as	base-independent	code. 

• Calculates	the	new	checksum	of	the	DLL. 
• When	started,	after	executing	all	malicious	actions,	the	malware	restores	the	original	code	of	

the	system	DLL	in	memory.	 

Each	added	malicious	module	has	the	following	structure:	 

{	uint	module_id,	uint	module_size,	char	data[module_size]	}.	 

Actually,	the	malware	itself	on	disk	is	an	array	of	modules. 



 
Fig. 1 Green	is	the	ID,	yellow	size	in	bytes,	red	the	encrypted	‘Slingshot’		word. 

For	instance,	the	described	loader	(6637DBCC6059A1E2E45956D98A3EA590)	has	the	value	
module_id	=	0xFF000001	and	contains	the	encrypted	word	‘Slingshot’.		In	its	entry	point	it	directly	
jumps	to	the	malicious	code	with	‘jmp	758E618C’. 

The	malicious	module	is	located	right	after	the	header.	Actually,	this	would	be	the	unpacker	for	the	
embedded	MZPE	module.	The	original	entry	point	address	and	the	checksum	of	the	DLL	are	stored	in	
the	module	with	module_id=0xFF000003.	The	original	code	is	stored	in	the	module	with	
module_id=0xEF000007. 

This	module	uses	the	following	parameters: 

Ss	-a	24964	-s	163007	-o	8	-l	313856	-r	24964	-z	228584 

where: 

• L	–	Size	of	the	infected	library 
• R	–	RVA	of	patched	data	in	library	(where	the	malware	code	starts) 
• A	–	RVA	of	modules	array,	24964	=	0x6184	=>	ImageBase	library	.758E0000 
• S	–	size	of	modules	array,	163007	=	0x27CBF	=>	in	the	infected	library	modules	are	embedded	

from	.758E6184	to	.7590DE43	address 
• O	–	offset	from	the	beginning	of	the	compressed	MZPE	file	till	the	modules	list.	Uses	for	finding	

the	modules	array	(address	.758E6184	in	a	picture	above) 
• Z	–	Maximum	data	size	that	will	be	restored	in	the	original	library 

To	ensure	correct	execution	and	avoid	system	crashes,	Slingshot	restores	the	original	library	data	
stored	in	ImageBase	+	R	to	ImageBase	+	R	+	Z	in	memory. 



In	case	the	malicious	modules	can´t	be	embedded	into	the	target	system	library,	Slingshot	uses	an	
additional	file	on	disk.	The	path	for	this	file	is	stored	in	the	module	with	module_id	0xFF000006.	It	
could	be	a	hardcoded	path	in	the	recycler	bin	(first	dword	is	0x12000006O);	or,	if	the	first	dword	is	
0x12000007,	malware	tries	to	read	this	file	directly	from	the	PhysicalDrive	object	by	calling: 

CreateFile(\\\\.\\PhysicalDrive	+	drive_number),	SetFilePointer,	ReadFile.	 

Module_id	0xFF000007	stores	the	encryption	key	in	module_id		0xCF000009:	this	module	is	called	
Cahnadr	and	this	is	the	main	kernel	mode	loader	implementing	almost	all	the	payloads. 

After	loading	additional	modules,	Slingshot	passes	the	execution	to	Cahnadr.	 

 

Ring0	loader 
This	loader	is	compressed	in	module_id	0xBF000001.	Actually,	there	might	be	more	than	one,	so	in	
case	the	first	loader	fails,	there	may	be	a	second	loader	in	the	binary	with	module_id	0xBF000002.	At	
this	stage,	Slingshot	uses	its	internal	logging	system	actively: 

 
Slingshot	checks	if	there	is	any	kernel-mode	payload	and	any	loader	available,	and	then	the	loaders	
are	run	one	after	the	other.	 

Upon	starting,	this	loader	gets	SeLoadDriverPrivilege	for	installing	malicious	drivers	into	the	system	
that	it	will	later	abuse	for	obtaining	kernel	privileges.	 

In	order	to	avoid	leaving	any	traces	of	this	activity	in	system	logs,	it	renames	the	ETW-logs,	and	for	
the	Security	and	System	logs	adds	the	.tmp	extension.	After	execution,	the	loader	removes	the	
extensions.	 

The	final	goal	of	this	module	is	to	load	the	Cahnadr	module	(kernel	mode	main	payload,	described	
below)	into	kernel	mode.	As	previously	stated,	Slingshot	has	different	ways	to	load	code	into	kernel	
mode,	each	using	its	own	loader.	 

The	simplest	loader	is	used	for	32-bit	systems	where	Driver	Signature	Enforcement	(DSE),	which	
requires	signed	drivers,	does	not	apply.		This	loader	simply	saves	the	driver	on	disk	and	loads	it.	 

When	the	driver	is	loaded,	the	loader	shares	the	malicious	payload	with	it	by	calling	DeviceIoControl	
with	control	code	0x222000. 



	 

This	driver	receives	commands	from	the	user-mode	loader	via	DeviceIoControl.	The	only	available	
command	in	this	case	allows	running	this	code	as	a	WorkItem	into	the	System	Worker	Threads	pool,	
which	is	a	pool	used	by	legitimate	software	for	running	quick	tasks. 

In	cases	where	the	operating	system	supports	DSE,	the	loader	exploits	a	couple	of	legitimate	but	
vulnerable	drivers	that	allow	writing	in	MSR	registers.	Successful	exploitation	of	the	drivers	would	
allow	to	set	in	the	MSR_LSTAR	register	a	handler	that,	after	running	Sleep,	calls	Cahnadr: 

 
In	order	to	prevent	patch	protection,	the	handler	restores	the	original	MSR	register. 

This	loader	leverages	the	following	drivers: 

312E31851E0FC2072DBF9A128557D6EF Goad.sys	–	driver	for	x86	systems	 
5F9785E7535F8F602CB294A54962C9E7 SpeedFan.sys	-	CVE-2007-5633 
9a237fa07ce3ed06ea924a9bed4a6b99 Sandra.sys	-	CVE-2010-1592 
978CD6D9666627842340EF774FD9E2AC ElbyCDIO.sys	-	CVE-2009-0824 
 
It	is	important	to	mention	that	the	digital	signatures	in	these	drivers	are	still	not	revoked.	 



All	the	drivers	above	are	loaded	into	the	kernel	directly	by	creating	the	required	keys	in	the	registry	
and	calling	the	ntdll!NtLoadDriver	function.	The	service	key	name	in	the	registry	starts	with	the	PCX*	
prefix. 

 

 
 
Cahnadr	–	main	kernel-mode	payload 

This	payload	can	be	considered	the	main	orchestrator,	running	in	kernel	mode	and	providing	the	
necessary	capabilities	for	all	the	other,	user-mode	payloads.	This	component	is	responsible	for	
different	features,	including: 

1. Anti-debugging	actions	and	checking	if	the	kernel	is	patched	or	not	
2. Calling	system	services	directly	to	hide	malicious	activities	
3. Hooks	KTHREAD.ServiceTable	for	threads	
4. Rootkit	actions	for	hiding	traffic	
5. Injecting	user-mode	payload	(main	malicious	payload)	into	services.exe	
6. Providing	malicious	API	for	user-mode	modules	
7. Providing	communications	via	network	
8. Notifying	GollumApp	payload	about	process-related	events,	providing	interfaces	for	

manipulating	their	memory	
9. Monitoring	all	network	devices	
10. Providing	sniffer	functionality	on	the	following	protocols:	ARP,	TCP,	UDP,	DNS,	ICMP,	HTTP	

 
Anti-debug	techniques	include:	 

• If	kernel	is	already	being	debugged,	it	calls	KdDisableDebugger()	terminating	the	debugging	
process 

• It	hooks	LiveKd	debugger	driver's	routines	IRP_MJ_CREATE,	IRP_MJ_READ,	FastIoDeviceControl 



• Installs	notifiers	to	monitor	PsSetLoadImageNotifyRoutine.	If	the	LoadImageNotify	event	
happens	when	LiveKdD.sys	is	loaded,	the	module	patches	the	entry	point	that	leads	to	error	
STATUS_FAILED_DRIVER_ENTRY 

In	order	to	detect	if	the	kernel	is	patched,	it	checks	the	kernel	image	in	memory	with	the	following	
kernel	files	on	disk: 

• \\SystemRoot\\system32\\kernel_name 
• \\SystemRoot\\LastGood\\system32\\kernel_name 
• \\SystemRoot\\$*\\system32\\kernel_name 

For	newer	x32	versions	it	also	checks	win32k.sys	at	the	same	paths.		 

It	is	important	to	note	that	Cahnadr	checks	only	CheckSum	and	TimeStamp	values	for	the	kernel	
image	in	memory.	If	one	of	them	is	different,	it	means	that	the	kernel	was	patched,	and	it	
terminates	its	execution. 

Actually,	it	needs	an	unpatched	kernel	and	win32k.sys	to	get	the	origin	function	from	
KeServiceDescriptorTable	and	KeServiceDescriptorTableShadow,	which	will	be	used	to	directly	
interact	with	system	services	and	hooking	the	KTHREAD.ServiceTable	on	x32	systems. 

In	order	to	hide	calls,	it	can	associate	system	services	to	some	Zw*,	Rtl*,	Nt*	functions.	Instead	of	
taking	the	addresses	for	these	functions	from	SSDT,	Cahnadr	extracts	them	from	the	kernel	image	
on	disk	for	unpatched	kernels.	 

It	also	implements	code	to	find	a	function	address	by	its	name	by	comparing	exported	routines	from	
ntdll	and	ntoskrnl	addresses:	if	the	address	of	the	exported	functions	is	the	same	as	the	system	
service	address,	it	means	the	address	was	correctly	found.	 

Ntdll.dll	exported	functions	addresses	are	also	taken	from	the	image	stored	on	disk	to	avoid	hooks	
set	by	other	programs.	 

For	routines	not	directly	operating	with	system	services,	Cahnadr	has	a	hardcoded	list: 

 
Not	all	functions	are	mandatory	to	be	found,	there	is	a	flag	for	each	of	them.	All	listed	routines	are	
used	for	injecting	malicious	code	into	user-mode	processes. 

For	newer	x32	versions	this	list	was	highly	extended,	adding	debug-related	functions	and	functions	
for	suspending	and	resuming	threads	and	processes. 

For	x32	systems,	Cahnadr	hooks	KTHREAD.ServiceTable.	It	copies	the	KeServiceDescriptorTable	and	
KeServiceDescriptorTableShadow,	then	fills	it	with	the	original	handlers	restored	from	disk	and	
changes	the	address	in	KTHREAD.ServiceTable	to	pointer	to	a	new	structure.	This	is	used	to	inject	
threads	into	user	mode:	once	a	component	is	injected	as	a	separate	thread,	Cahnadr	patches	its	
KTHREAD.ServiceTable	with	the	original	handlers	in	order	to	hide	its	malicious	functionality	and	
avoid	possible	installed	hooks.	 

Cahnadr	also	provides	the	following	API	functionality: 



• Direct	disk	access:	read/write	by	raw-offset,	defragmentation	ban,	etc.	These	routines	are	used	
for	working	with	the	virtual	file	system 

• Read/write	into	memory	by	raw	address 
• Routines	for	injecting	code	into	a	process	as	a	separate	thread.	It	is	possible	to	set	the	thread	

state	and	choose	the	preferred	routine	for	creating	the	thread	(NtCreateThreadEx	or	
NtCreateThread).	For	GollumApp	it	is	obligatory	to	use	NtCreateThread 

• Get	the	access	token	by	process_id 
• Get	the	SERVICE_DESCRIPTOR_TABLE	address 
• Get	the	DRIVER_OBJECT	object	pointer	by	driver	name 
• Get	detailed	information	about	processes	opened	in	csrss.exe	(start	time,	time	in	kernel	mode,	

time	in	user	mode,	number	of	calls	ZwRead	and	ZwWrite,	among	of	data	received/sent	via	
ZwRead/ZwWrite) 

• Get	handle	for	process_1	in	process_2.	In	other	words,	opens	process_1	from	process_2.	This	
way	process_2	gets	the	handle	of	process_1 

• Close	handle	that	belongs	to	any	process 
• Provides	network	functionality:	add	a	new	network-related	task,	delete	an	old	one,	turn	on/off	a	

network	task,	send	information	about	all	active	network	tasks	to	GollumApp 
• Hooks	the	ServiceTable	in	KTHREAD	in	the	specified	thread	or	process	(only	on	x32),	providing:	

setting/deleting	a	hook	by	ThreadID,	setting/deleting	hook	for	all	threads	by	PID,	checking	if	
thread/process	was	hooked 

• Sets	time	to	sleep	before	shutdown 

Cahnadr	calls	PsSetCreateProcessNotifyRoutine,	PsSetCreateThreadNotifyRoutine	routines	in	order	
to	automate	installing	hooks.	Created	processes	will	be	hooked	if	their	parent	process	was	hooked,	
as	will	threads	if	their	process	was	hooked. 

Shutdown	notifications	are	detected	by	calling	the	IoRegisterShutdownNotification	routine.	When	a	
notification	is	received,	it	is	sent	to	GollumApp	with	the	time	that	GollumApp	can	spend	for	
completion.	While	GollumApp	works,	Cahnadr	sleeps.	 

It	installs	bugcheck	notifications	by	calling	the	KeRegisterBugCheckReasonCallback	routine.	When	a	
notification	is	received	it	calls	KeBugCheck	with	the	undocumented	POWER_FAILURE_SIMULATE	
parameter,	which	is	a	way	to	reboot	from	kernel	mode	without	BSOD	and	crush	dump.	This	way,	in	
case	a	fatal	error	occurs,	Cahnadr	reboots	the	system	without	creating	a	memory	dump	on	disk. 

The	communication	between	kernel	and	user	mode	modules	is	implemented	in	different	ways	for	
x32	and	x64	components.	 

In	x64	components	Cahnadr	sets	IRP-requests	handlers	for	the	‘null.sys’	driver.	Each	handler	
contains	a	‘jmp’	operation	to	the	malicious	code	located	in	the	‘null.sys’	image	in	memory.	This	is	
how	hooks	are	typically	set	in	this	APT,	making	them	harder	to	detect.	Also,	the	authors	decided	to	
use	IRP-requests	shown	in	the	picture	below: 



	 	 
While	null.sys	uses: 

 
However	malicious	and	legitimate	IRP-handlers	have	a	conflicting	component,	as	both	null.sys	and	
Cahnadr	can	process	requests	to	IRP-MJ-CLOSE.	That’s	why	only	one	hook	and	three		ordinary	
handlers	are	set.	After	that,	user	mode	modules	can	send	data	to	Cahnadr	by	calling	
CreateFile(\\\\.\\NUL,	…)	+	DeviceIoControl. 

In	x32	components	another	approach	was	used.	Cahnadr	registers	a	RegistryCallback	routine	by	
calling	CmRegisterCallback	to	monitor	all	operations	in	the	registry.	When	any	user	mode	module	
sends	something	to	Cahnadr	it	sets	the	ArbitraryUserPointer	field	of	the	TIB	pointer	to	the	related	
data,	starting	with	0x2BADDOOD,	and	then	calls	RegEnumKeyW	which	triggers	the	kernel	mode	
callback. 

Kernel	mode	registry	callback	checks	that	the	registry	operation	is	RegNtEnumerateKey	and	then	
looks	for	0x2BADDOOD: 

 
If	found,	Cahnadr	handles	the	command	and	returns	the	result	to	the	buffer	used	in	the	request.	 

 

Kernel-mode	networking	module	 
Cahnadr	hooks	the	following	routines	in	order	to	hide	its	traffic,	perform	different	tasks	and	provide	
additional	functionality	for	the	user	mode	components: 

• ndis!NdisMSendNetBufferListsComplete 
• ndis!NdisMIndicateReceiveNetBufferLists 



These	routines	are	callbacks	run	by	network	drivers	to	notify	handlers	with	all	data	sent	or	received.	
The	function	lists	in	PNET_BUFFER_LIST	all	packets	and	their	related	event.	Cahnadr	checks	if	there	
are	Slingshot-related	packets	in	this	list,	and	if	so,	removes	them.	Let´s	explain	this	in	more	detail: 

The	trick	is	that	all	the	malware	is	allocated	to	a	particular	pool	that	allows	discriminating	it	from	
other	benign	calls.	NdisAllocateNetBufferListPool	creates	NET_BUFFER_LIST,	that	is	initialized	calling	
NdisAllocateNetBufferAndNetBufferList.	When	the	network	driver	sends	data,	it	gets	into	such	a	
NET_BUFFER	structure,	which	in	turn,	gets	into	NET_BUFFER_LIST.	The	callbacks	routine	
NdisMSendNetBufferListsComplete,	that	gets	the	NET_BUFFER_LISTs	with	data	successfully	sent,	is	
hooked.	Malware	simply	checks	if	any	entry	in	NET_BUFFER_LIST	was	allocated	from	the	malware	
pool	and,	if	so,	will	simply	not	return	it	to	the	original	handler. 

This	sniffer	has	a	list	of	tasks,	each	one	associated	with	a	list	of	handlers.	Inbound	and	outbound	
packets	are	examined	and	passed	to	the	appropriate	task’s	processor,	which	calls	all	handlers	
associated	with	the	task.	The	result	determines	whether	malware	should	hide	the	package. 

We	have	seen	three	types	of	task: 

HTTP:	This	is	the	only	handler	that	notifies	GollumApp	(user	mode	payload,	described	below)	that	
HTTP	data	is	being	transferred. 
 
ARPf:	(two	handlers	for	this	type).	The	first	one	notifies	GollumApp	when	an	ARP-request	is	received	
and/or	when	an	ARP-response	is	sent.	 
The	second	one	stores	this	information	in	its	internal	storage,	collecting	information	about	the	
network	structure.	This	task	is	enabled	by	default. 
 
IP2f:	(two	handlers	of	this	type).	The	first	one	checks	if	the	package	comes	from	the	malware	
operators,	only	to	decide	whether	the	package	should	be	hidden.	This	is	decided	by	XORing	two	
Timestamps	values	from	the	Options	field	in	the	TCP-header	(RFC1323,	code	0x080A).	If	the	result	is	
equal	to	0xDEADFOOD	then	this	package	should	be	hidden.	 

The	second	one	notifies	GollumApp	that	some	TCP/UDP	or	ICMP	packets	that	suit	malicious	filters	
were	found.	 

For	instance,	for	TPC	traffic	this	filter	uses	the	same	described	XOR	procedure	with	the	constant	
0xDADAE000,	sending	GollumApp	the	seqNumber,	askNumber	and	src	port	values.	 

For	UDP,	packets	with	a	length	of	0x55	bytes	containing	DNS	responses,	it	checks	that	the	field	
dns.Identifier	equals	0x212.	In	that	case,	the	packet	is	hidden	and	GollumApp	is	notified	with	the	
resolved	IP	and	TTL	of	the	packet. 

For	ICMP,	packets	containing	the	«Destination	port	unreachable»	error	it	checks	that	the	overlying	
protocol	contains	the	constant	0xE17F	(57727).	In	that	case,	GollumApp	is	notified	with	
ip.Destination,	ip.identification,	ip.length. 

This	task	is	enabled	by	default. 

The	malware	identifies	HTTP	traffic	by	checking	the	ASK	flag	in	TCP	protocol,	and	by	finding	the	HTTP	
signature	in	the	TCP	package	body.	This	task	is	disabled	by	default,	however	GollumApp	can	enable	
it. 

Additionally,	this	kernel	mode	module	provides	the	following	functionality	for	user	mode	
components: 

• ARP-query:	obtains	the	MAC-address	for	a	specified	IP	address.	Requires	network	interface	as	a	
parameter 



• ARP-reply:	sends	its	own	MAC	address	as	a	response	to	a	specified	ARP-request,	regardless	of	
whether	the	IP	from	the	request	and	the	infected	computer	are	the	same	or	not 

• Sends	custom	network	package,	where	all	fields	can	be	customized	from	the	Ethernet-layer 
• Sends	custom	IPV4	package 

Cahnadr	supports	IEEE	802.11	standard,	allowing	it	to	operate	with	WiFi	frames. 

Network	interfaces	are	traced	using	Plug-and-Play	notifications	with	EventCategory	-	
PNPNOTIFY_DEVICE_INTERFACE_INCLUDE_EXISTING_INTERFACES.	When	a	network	interface	
change	event	happens,	all	hooks	listed	above	apply	and	Cahnadr	checks	the	category	of	the	new	
interface	(bridge/wan/lan).	Depending	on	the	type	of	interface,	it	gets	different	data	that	is	written	
in	thee	malware´s	storage: 

• Ethernet:	MAC-address	and	maximum	frame	size 
• Wireless	(802.11)	Access	Point	MAC-address	and	authentication	state	 

 

User	mode	payloads 
GollumApp 
This	payload	(named	after	the	famous	character	from	The	Hobbit)	is	the	main	user	mode	payload,	
orchestrating	activities	of	other	modules	and	having	a	constant	interaction	with	the	kernel	mode	
Cahnadr	orchestrator. 

Initially	it	is	injected	into	services.exe	as	a	separate	user	mode	thread:	first	it	allocates	the	memory,	
then	writes	the	module	and	creates	the	thread.	After	that,	it	calls	CsrCreateRemoteThread	in	the	
context	of	the	csrss.exe	for	creating	the	new	thread	in	services.exe,	which	is	typical	for	creating	new	
user	mode	threads	from	ring0.	This	is	done	in	this	way	because	malware	works	directly	with	system	
services. 

The	following	summarizes	its	functionality: 

●        Collects	network-related	information:	routing	tables,	configuration,	information	about	proxy-
servers	and	AutoConfigUrl	settings 
●        Collect	notifications	about	all	changes	in	the	routing	table	and/or	changing	interface	IP-
address. 
●        Handles	IO	requests	for	the	encrypted	file	system 
●        Contains	various	command	processor	for	communication	with	CNC 
●        Collects	all	passwords	saved	in	Mozilla	and	IE 
●        Can	work	with	the	clipboard 
●        Can	log	all	pressed	keys 
●        Collects	information	about	hard	disk	partitions 
●        Collects	information	about	USB	devices	and	sends	notifications	when	new	device	is	
connected.	 
●        Can	run	new	process	with	SYSTEM	privileges	as	a	child	of	smss.exe 
●        Injects	malicious	module	SsCb	into	specified	process 
 

SsCB 
This	module	provides	the	following	features: 

• Makes	screenshots	of	a	specified	window,	or	the	whole	desktop 
• Steals	data	from	clipboard 



• Collects	information	about	opened	windows:	title,	size,	position 
• Can	close	any	window	by	sending	WM_CLOSE	message 
• Shows	specified	window	by	calling	ShowWindow 
• Collects	information	about	active	desktop,	active	window,	name	of	a	process	that	created	this	

window,	title	of	a	window,	keyboard	layout 

ffproxy 
Collects	information	related	to	proxy	settings	for	all	Mozilla	profiles.	 

• From	pref.js:	Collects	HTTP	and	SSL	proxies,	autoconfig_url	(contains	local	or	remote	URL	to	
Proxy	AutoConfiguration	file,	for	instance,	when	proxy	settings	are	managed	remotely) 

• From	signons*	files:	retrieves	domain,	port	and	username	with	passwords,	if	available 
• signons.sqlite		 for	3.5-32.0	versions 
• signons3.txt					 for	3.0-3.5			versions 
• signons2.txt					 from	1.5.0.10	and	2.0.0.2	to	3.0	versions 
• signons.txt						 for	lower	versions 

 

NeedleWatch 
This	component	is	injected	in	almost	all	processes	using	the	couple	GollumApp	and	Cahnadr.	It	spies	
on	the	content	of	the	buffers	passed	to	the	following	functions: 

• Functions	that	draw	text 
• gdi32!ExtTextOutW 
• gdi32!ExtTextOutA 
• gdi32!TextOutA 
• gdi32!TextOutW 

• Functions	that	writes	to	Console 
• kernel32!WriteConsoleA 
• kernel32!WriteConsoleW 

• Function	used	for	rendering	unicode	text	by	Uniscribe	library 
• usp10!ScriptShape 

• Function	used	for	rendering	text	by	DirectWrite 
• dwrite!DWriteFontFace::GetGlyphIndicesW 

• Functions	used	for	encryption	and	decryption	by	SSP	(Security	Support	Provider) 
• secur32!EncryptMessage 
• secur32!DecryptMessage 

• Functions	from	Netscape	Portable	Runtime	 
• nspr4!PR_GetUniqueIdentity 
• nspr4!PR_Read 
• nspr4!PR_Write 

The	implementation	is	based	on	hooks.	Each	hook	is	set	as	one	of	the	privileged	instructions	placed	
at	the	beginning	of	the	function.	Before	placing	hooks,	NeedleWatch	registers	an	exception	handler	
by	calling	AddVectoredExceptionHandler,	so	when	the	hooked	function	is	called,	the	first	instruction	
raises	an	exception	which	is	handled	by	NeedleWatch.	In	the	malware	exception	handler	
NeedleWatch	calls	the	original	function	and	extracts	all	the	sent/received	data.	 

Functions	from	the	secur32	and	nspr4	modules	are	the	most	interesting	ones.	 



EncryptMessage	and	DecryptMessage	are	functions	of	the	Security	Support	Provider	Interface,	not	
linked	to	any	Security	Support	Provider	in	particular,	so	hooking	these	functions	allows	NeedleWatch	
to	spy	on	every	provider:	Digest,	Kerberos,	NTLM,	Schannel,	or	any	other	one. 

 
NeedleWatch	can	also	read	encrypted	Mozilla	traffic	as	follows:		Netscape	Portable	Runtime	(NSPR)	
provides	a	platform-neutral	API	for	system	level	and	libc-like	functions.	The	API	is	used	in	Mozilla	
clients,	many	of	Red	Hat's	and	Oracle's	server	applications,	and	other	software.	In	I/O	NSPR	operates	
with	file	descriptors	that	can	be	layered.	When	read/write	operations	occur,	NeedleWatch	checks	
the	layer	of	the	file	descriptor	and	if	it	is	NSS	(Network	Security	Services),	SSL	or	any	other	SSL-based	
layer,	NeedleWatch	stores	the	data	from	the	buffer	sent	in	the	I/O	operation. 

 

Sfc2 
Disables	Windows	file	protection,	making	sfc.exe	utility	believe	that	the	patched	disk	system	library	
(scesrv	or	spoolsv)	is	not. 

This	is	possible	by	patching	wcp.dll	in	the	TrustedInstaller.exe	process.	Based	on	the	exported	
wcp!RtlParseManifestMicrodomIntoCdf	function,	Sfc2	searches	for	the	address	of	the	non-exported	
wcp!GetRootElement	function	and	calls	it	in	order	to	retrieve	the		_XMLWALK_ELEMENT_DECL	
structure.	Once	returned,	this	structure	will	be	patched	at	the	0x34	offset	with	0	instead	of	0x1E. 

In	x64	version	it	hooks	ZwCreateFile	and	ZwOpenFile	in	the	same	way	as	described	in	the	
NeedleWatch	section.	If	the	hook	handler	found	that	the	file	object	name	passed	to	function	points	
to	scesrv.dll	library	in	system	or	in	winsxs	directory,	malware	changes	the	object	name	to	scesrv.dll	
located	in	winsxs\backup	directory.	So,	when	the	process	is	trying	to	check	patched	scesrv,	hooks	
make	it	so	that	an	unpatched	backup	file	is	checked	instead. 

Additional	Technical	Details 
After	analyzing	the	main	components	of	this	framework,	we	still	want	to	highlight	some	specific	
technical	details	and	especially	interesting	related	artifacts	in	this	section. 

Packer 
All	samples	are	packed	with	a	previously	unknown	packer	that	transforms	custom	PE	sample	into	
base-independent	code.	This	way,	the	packer	allows	to	compile	new	components	of	this	APT	as	
ordinary	PE	files	and,	after	unpacking,	they	can	use	them	as	a	base-independent	code.	 

That	helps	to	embed	them	into	other	samples,	among	other	advantages,	such	as	easy	process	
injection	or	infecting	system	libraries.	Other	typical	advantages	such	as	smaller	code	and	hiding	
functionality	are	also	provided. 

After	packing	the	resulting	structure	is	as	follows: 

1. Header,	0x400	bytes	long	
2. Unpacker	stub	
3. Data	for	unpacking	

 
The	header,	initial	base-independent	code	and	all	data	that	is	necessary	for	unpacking	are	shown	
below: 



 
Some	of	the	reserved	parameters	will	be	used	internally	by	the	unpacker,	others	are	there	for	future	
improvements.	In	later	versions	of	this	packer,	module	and	section	names	are	encrypted	by	a	simple	
XOR-based	algorithm.	 

The	value	at	offset	0x198	contains	the	virtual	address	of	a	first	section	descriptor.	Each	section	is	
represented	in	this	structure	with	six	fields:	section	RVA,	characteristics,	real	size,	packed	size.	If	real	
size	is	not	equal	to	packed	size	if	means	that	this	section	is	encrypted.	The	last	two	fields	are	
reserved.	After	the	descriptor,	there	is	a	data	section,	followed	by	more	descriptors	with	the	same	
structure. 

The	packing	algorithm	is	based	on	the	Aplib	compression	library: 

1. Packs	each	section	with	APlib	compression	
2. Replaces	the	original	PE	header	with	a	new	one	generated	by	the	packer	
3. Adds	a	stub	with	the	decrypt	routine	

 
Base-independent	code	decrypt	routine	works	as	follows:	 

1. Obtains	the	addresses	of	GetProcAddress	&	LoadLibrary	functions	
2. Allocates	memory	for	the	original	unpacked	PE-file	
3. Unpacks	all	sections	and	writes	them	in	the	allocated	memory	
4. Sets	rights	for	each	section	by	calling	VirtualProtect	
5. Restores	the	original	import	table	
6. Fixes	relocations;	works	with	exceptions:	for	x64	images	adds	exception	handlers	

(RtlAddFunctionTable),	for	x32	patches	ntdll!RtlIsValidHandler	so	it	always	returns	true	
7. Wipes	all	headers	and	returns	execution	to	the	original	entry	point	



 

SlingDll.Dll	and	Minisling	modules 
For	some	victims	we	found	that	attackers	did	not	use	Slingshot.	Instead,	they	used	two	components	
named	SlingDll.dll	and	Minisling.	 
 
SlingDll	is	typically	located	in	system32	folder	as	a	standalone	DLL	with	a	random	name	and	loaded	
by	svchost	via	COM	Object	hijacking	(CLSID	=6C19BE35-7500-11D1-AD94-00C04FD8FDFF).	It	uses	
module_id	0xFF000008	for	fixing	SlingDll.dll	export	table	in	runtime.	Then	it	obtains	the	path	to	a	
MZPE	sample	from	module_id	0xFF000008: 
 

 
and	fills	the	export	table	with	links	to	the	exported	routines	of	this	file	(DLL-forwarding).	This	way,	
when	SlingDll.#1	is	called,		esscli.#1	will	be	run.	The	export	table	in	memory	looks	like	this: 

 
SlingDll.dll	also	uses	a	smart	trick.	Its	image	in	memory	looks	initially	like	this: 

 



Then	it	copies	the	whole	image	to	heap	and	UnmapViewOfFile	to	unload	SlingDll.Dll	image.	After	
that,	it	allocates	new	memory	by	calling	VirtualAlloc	with	the	same	start	address	and	size	that	the	
unloaded	image	had.	Finally,	malware	copies	all	data	from	heap	back	to	the	allocated	memory,	
resulting	in	the	following: 

 
At	that	moment	the	image	is	unloaded	but	keeps	working	because	ImageBase	is	the	same. 

The	last	thing	that	SlingDll.dll	does	is	run	the	Minisling	module. 

 

Minisling	uses	a	global	mutex	(Global\{6D29520B-F138-442e-B29F-A4E7140F33DE})	to	ensure	it	is	
run	only	once.	It	checks	if	one	of	the	following	drivers	is	loaded	into	memory:	DepFrzLo.sys,	
DeepFrz.sys,	DfDiskLo.sys;	and	if	none	is	found	it	checks	how	many	times	the	operating	system	was	
rebooted	before	correctly	shutting	down.	This	is	done	by	comparing	EventRecordID	from	ETW-logs:	
malware	gets	this	value	by	sending	an	XML-requests	with	EventID=12	and	Provider.Name	=	
Microsoft-Windows-Kernel-General	in	order	to	obtain	the	last	reboot	time,	and	with	EventID=41	and	
Provider.Name	=	Microsoft-Windows-Kernel-Power	to	obtain	the	last	unsuccessful	attempt	to	turn	
the	machine	off. 

When	the	limit	of	reboots	is	reached,	Minisling	deletes	itself.	In	cases	when	the	computer	was	
successfully	rebooted,	the	counter	is	set	to	0.	If	one	of	the	drivers	listed	above	is	loaded	or	if	the	
counter	limit	is	not	reached,	Minisling	starts	finding	and	executing	loaders	in	the	same	sequence	as	
previously	described. 

 

Infected	Mikrotik	Device	-	chmhlpr.dll  
Mikrotik	is	a	Latvian	network	hardware	provider.	For	managing	their	routers,	this	company	provides	
to	customers	with	software	called	WinBox	that	downloads	a	number	of	DLLs	from	the	router’s	file	
system	and	loads	them	directly	into	the	computer	memory.	This	is	its	normal	behavior	by	design.		

A	library	called	ip4.dll	was	added	onto	the	router	by	the	attacker.	After	it	was	added,	the	Winbox	
software	started	to	download	and	run	it	–	we	are	not	sure	why.		

During	our	research,	we	found	several	victims	whose	Mikrotik	routers	were	hacked,	resulting	in	it	
returning	a	suspicious	ip4.dll	file	with	the	internal	name	chmhlpr.dll.	Indeed,	this	DLL	is	a	Trojan-
Downloader	related	to	Slingshot.	 

That	makes	us	believe	that	Slingshot	is	able	to	target	victims	by	directly	infecting	Mikrotik	routers	in	
order	to	abuse	this	mechanism	used	by	WinBox.	We	do	not	know	how	these	routers	were	
compromised,	however	Wikileaks´	Vault7	describes	the	use	of	the	ChimayRed	exploit	to	compromise	
such	devices.	The	exploit	is	now	available	on	GitHub.	 

Mikrotik´s	official	forum	declares	that	this	exploit	only	works	until	RouterOS	v.6.38.4,	however	this	
particular	victim	was	running	version	6.38.5	of	the	firmware,	making	it	unclear	whether	this	version	
is	still	vulnerable	or	if	attackers	used	a	different	one.	We	contacted	Mikrotik	and	reported	this	attack	
procedure.	According	to	Mikrotik,	latest	versions	of	WinBox	no	longer	download	the	ipv4.dll	file	
from	the	router,	closing	the	attack	vector. 

The	following	table	summarizes	malicious	ipv4.dll	files	abusing	this	method: 



MD5 Size File	location 

042CC382ACB5B2B70C78BAA77BB7C5F9 43520 %AppData%\Roaming\mikrotik\winbox\5.20-
3610090039\ipv4.dll 

AFAFF3310D8C094774DA6BA856C1A30E 43520 %AppData%\Roaming\Mikrotik\Winbox\5.20-
3610090039\ipv4.dll 

01C85EE057B6B529891C0A4275A642DA 43520 %AppData%\Roaming\Mikrotik\Winbox\6.33.1-
1338332867\ipv4.dll 

87A28A99697452A37FC229B3AA3AFE97 43520 %AppData%\Roaming\mikrotik\winbox\6.38.5-
3172206015\ipv4.dll 

 
chmhlpr.dll	downloads	a	malicious	packed	MZPE	to	execute.	This	library	has	four	hardcoded	
parameters: 

• IP	for	downloading	the	payload.	In	the	sample	that	we	found,	the	payload	was	located	in	the	
same	compromised	Mikrotik	router	(192.168.88.1).	 

• Port	to	connect	to	(4443	in	our	sample). 
• Number	of	connection	attempts	(3	in	our	sample). 
• Delay	between	attempts,	in	seconds	(90	seconds	in	our	sample). 

If	no	IP	is	hardcoded,	it	waits	for	an	incoming	connection	on	the	specified	port. 

Once	it	gets	connection	it	sends	the	magic	value	0x43237FB2	and	waits	for	the	packed	module.	It	
checks	for	a	constant	at	0x84	offset,	looking	for	0xDEADFOOD	in	order	to	unpack	and	load	this	code.	
Then	it	shares	the	socket	of	the	established	connection	to	the	new	module	and	runs	it.	 

The	downloader	can	also	use	a	proxy	information	detailed	in:	
*UserSID*\Software\Microsoft\Windows\CurrentVersion\Internet	Settings\ProxyServer 

It	searches	for	proxy	credentials	in: 

• Windows	protected	storage,	where	ItemName	parameter	contains	proxy	domain 
• Credentials	from	IE	as	documented	here	 

KPWS 
There	is	a	second	Trojan-Downloader	called	‘kpws’	designed	to	download	another	Slingshot	
component	and	run	it.	Unlike	chmhlpr,	it	can´t	connect	over	proxies,	can’t	listen	for	connection,	
parameters	are	set	in	cmd	line	(embedded	in	packed	MZPE)	and	it	actively	uses	logging. 

The	main	difference,	however,	would	be	the	magic	constant	sent	as	first	packet,	set	to	0xC0FFEE43.	
This	tool	contains	a	reference	to	Smeagol	(Gollum’s	original	name	in	The	Lord	of	the	Rings)	which	
actually	refers	to	GollumApp.	 

Additional downloaders 
‘Rc’	downloader 
This	component	named	‘rc’	has	the	same	input	parameters	as	chmhelp.dll	and	the	same	output	
askpws.		It	provides	the	following	functionality: 

• Resolves	environment	variables. 



• Sends	info	about	files	in	directory:	path,	size,	date	modified. 
• Write	files,	sends	files. 
• Sends	info	about	run	processes:	PID,	PPID,	creation	time,	name	of	the	executable	file	for	the	

process,	account	name	with	domain,	is	process	run	under	Wow64. 
• Terminates	process	by	PID. 
• Impersonates	user	by	login	and	password	received	from	server	or	by	process	PID. 
• Reverts	to	self	after	impersonation. 
• Creates	process.	If	impersonation	was	successful	than	creation	take	place	on	behalf	of	

impersonated	user. 
• Communicates	with	created	process. 
• Sends	name	of	the	local	computer,	Windows	version,	build	number,	installed	service	pack. 
• Sends	username. 
• Migrates	to	another	process:	infects	process	by	PID	with	itself	in	memory.	Socket	connected	to	

server	is	passed	too. 
• Migrates	to	another	process:	path	to	process	to	be	created	is	received	from	server.	Inject	is	only	

in	memory.	Socket	connected	to	server	is	passed	too.	When	injected,	malware	downloads	and	
runs	next	Slingshot	component. 

• Downloads	and	configures	new	module,	then	runs	it	in	new	thread	in	current	process.	All	logging	
of	new	module	will	be	send	to	server. 

 
The	configuration	of	a	new	module	can	be	only	done	through	command	line	(embedded	in	the	
header	of	the	packed	component)	and	consists	ofreceiving	it	from	the	C2	server,	parsing	it	and	
inserting	it	into	the	downloaded	sample.	 

This	seems	a	strange	behavior,	as	there	is	no	need	to	do	all	this	on	the	victim	side.	 

Interestingly,	‘rc’	logs	in	some	victims	showed	connections	to	the	2869/1900/5431	ports,	linked	to	
vulnerabilities	in	previous	UPnP	protocols.	This	might	be	another	one	clue	that	attackers	used	
vulnerable	routers	as	infection	vector. 

 

Spork	downloader 
This	is	the	last	downloader	we	have	found,	quite	different	from	the	ones	described	above: 

 
Not	as	interesting	as	its	main	duty	(downloads	and	run	a	payload)	is	its	implementation.	This	module	
introduces	a	rule	engine	with	embedded	serialized	rules.	This	is	intended	to	find	some	Personal	
Security	Products	(PSPs)	that	suit	the	rules	among	the	started	processes.	This	is	used	to	decide	to	
which	process	the	embedded	malicious	shellcode	will	be	injected. 

Rules	are	serialized	according	the	following	scheme: 

• Byte	count_rules,	count_PSPs. 
• Rule	all_rules[count_rules]	(6	or	8	bytes	per	rule	depending	on	spork	version	-	yellow). 
• Short	offsets_to_PSP_names[count_PSPs]	(purple). 
• Char	PSP_names[count_PSPs][]	(green). 



 

 
Each	rule	consists	of	6	fields:	 

• Process	name	of	the	PSP	represented	as	index	in	offsets	array. 
• Array	of	names	of	processes	to	inject	to	as	index	view	too	(some	below	will	be	described). 
• Min	version	of	the	PSP. 
• Max	version	of	the	PSP. 
• Flags:	for	example,	x32/x64. 
• Type	used	as	result	when	rule	was	found. 

Spork	enumerates	all	the	started	processes,	checking	each	of	them	with	each	rule.	If	any	process	
matches	at	least	one	of	them,	it	decides	whether	to	inject	code	into	it	depending	on	the	type	of	the	
matched	rule.	Type	can	be	any	of	the	following	values: 

• Type	0:	default 
• Type	1:	error 
• Type	2:	inject	into	matched	PSP 
• Type	3:	inject	into	lsass.exe 
• Type	4:	inject	into	winlogon.exe 
• Type	5:	inject	into	svchost.exe 
• Type	6:	inject	into	process	specified	in	second	field	of	matched	rule 

If	no	process	matches	any	rules,	then	the	default	process	‘svchost.exe’	is	used	for	injection. 

The	matching	process	with	a	rule	can	be	summarized	as	follows: 

• Process	name	is	equal	to	the	PSP	name	in	rule 
• Version	of	the	PSP	is	inside	the	bounds	specified	in	the	rule 
• Process	suits	all	flags	that	are	set	in	the	rule	 

The	version	of	PSP	is	determined	by	sequence	calls	to	GetFileVersionInfo	and	VerQueryValue	to	get	
dwProductVersionMS	field,	which	contains	the	number	of	the	product	this	file	(PSP)	was	distributed. 

The	following	table	summarizes	the	found	PSP	with	the	process	to	inject: 



found	PSP	name versions bitness process	to	inject 

avfwsvc.exe 00-ff x32 avguard.exe 

avfwsvc.exe 00-ff x64 inssda64.exe 

avgtray.exe 00-ff x32 avgtray.exe 

avgtray.exe 00-ff x64 avgsrmaa.exe 

avp.exe 01-07 x32-x64 winlogon.exe 

avp.exe 08-0c x32 avp.exe 

avp.exe 08-0c x64 lsass.exe 

avp.exe 0d-0d x32-x64 lsass.exe 

avastui.exe 00-ff x32 avastui.exe 

avastui.exe 00-ff x64 winlogon.exe 

avgnt.exe 00-ff x32 avguard.exe 

avgnt.exe 00-ff x64 inssda64.exe/avshadow.exe 

avgui.exe 00-ff x32-x64 winlogon.exe 

bdagent.exe 00-ff x32-x64 bdagent.exe 

cfp.exe 00-ff x32-x64 cfp.exe 

casc.exe 07-08 x32-x64 svchost.exe 

casc.exe 05-06 x32-x64 error 

defenderdaemon.exe 00-ff x32-x64 error 

egui.exe 00-ff x32-x64 default	-	svchost.exe 

fsdfwd.exe 00-ff x32-x64 default	-	svchost.exe 

mcagent.exe 00-ff x32-x64 winlogon.exe 

rstray.exe 00-ff x32 rstray.exe 

rstray.exe 00-ff x64 error 

rtvscan.exe 00-ff x32-x64 default	-	svchost.exe 

tmproxy.exe 00-ff x32-x64 tmproxy.exe 

umxcfg.exe 07-08 x32-x64 default	-	svchost.exe 

umxcfg.exe 05-06 x32-x64 error 

zlclient.exe 00-ff x32-x64 error 

 



Instead	of	injecting	the	malicious	code	in	already	started	processes,	spork	creates	a	new	process	of	
the	selected	image.	Process	is	created	with	the:	flags	hide,	create	no	window,	default	instead	of	
loading	cursor	and	suspended.	Then	it	creates	a	new	section,	fills	it	with	malicious	shellcode	
depending	on	the	created	x32	or	x64	process	and	patches	the	EntryPoint	so	that	it	calls	the	
shellcode.	The	last	step	is	calling	ResumeThread	to	run	it.		 

The	new	shellcode	loads	its	needed	libraries	by	parsing	PEB,	connects	to	its	C2	(specified	in	cmd-
line),	sends	to	it	constant	0xC0FFEE44	or	0xC0FFEE43	depends	on	process	bitness,	downloads	the	
malware	from	the	received	answer,	passes	to	it	socket	used	for	the	connection	and	runs.	Unlike	all	
the	previously	described	downloaders,	it	doesn’t	check	for	0xDEADFOOD	at	0x84	offset. 

Victims 
Using	our	telemetry,	we	were	able	to	find	almost	one	hundred	victims,	most	of	them	based	in	the	
Middle	East	and	Africa.	The	following	chart	shows	the	percentage	of	victims	per	country: 

 
 

 
 
 
 
 
 
 
 



 
 

Conclusions 
The	discovery	of	Slingshot	reveals	another	complex	ecosystem	where	multiple	components	work	
together	in	order	to	provide	a	very	flexible	and	well-oiled	cyber-espionage	platform.	The	malware	is	
highly	advanced,	solving	all	sort	of	problems	from	a	technical	perspective	and	often	in	a	very	elegant	
way,	combining	older	and	newer	components	in	a	thoroughly	thought-through,	long-term	operation,	
something	to	expect	from	a	top-notch	well-resourced	actor.	All	this	framework	is	designed	for	
flexibility,	reliability	and	to	avoid	detection,	which	explains	why	these	components	were	not	found	
for	more	than	six	years. 
 
This	long-term	campaign	seemed	to	be	focused	on	Africa	and	the	Middle-East	region,	but	obviously	
our	telemetry	only	offers	partial	visibility	and	this	could	be	just	a	subset. 
 
In	terms	of	attribution,	we	have	not	been	able	to	find	any	definitive	links	to	any	previously	known	
APTs.	Some	of	the	techniques	used	by	Slingshot,	such	as	the	exploitation	of	legitimate,	yet	
vulnerable	drivers	has	been	seen	before	in	other	malware,	such	as	Turla,	Equation’s	Grayfish	
platform	and	White	Lambert.	Most	of	the	debug	messages	found	throughout	the	platform	are	
written	in	perfect	English.	The	references	to	Tolkien’s	Lord	of	the	Rings	(Gollum,	Smeagol)	could	
suggest	the	authors	are	fans	of	Tolkien’s	work.	 
 
One	interesting	point	is	the	possibility	of	abusing	Mikrotik	devices	(and	maybe	other	network	
hardware	providers)	as	initial	infection	vector	for	some	victims.	We	can´t	exclude	other	spreading	
methods	for	this	campaign,	given	the	versatility	of	this	actor.		 
 

Appendix	I	-	Scripts 



String	decryption 
Instead	of	storing	strings	in	raw	view,	some	components	stores	them	in	encrypted	view	and	decrypts	
when	it’s	needed.	This	function	implements	decryption	which	can	be	used	for	further	analysis. 
def get_name(name): 
   
   key = 
bytearray(b'\xE0\x80\xC5\xAF\xB5\xD7\xC4\xA1\xBD\xBA\xE4\xDA\x96\xBF
\x9A\x8A\x9A\xA8\xBE\xD2\x85\x84\xC4\xB0\xAA\xEA\xD8\xAC\xC4\xF3\xAF
\x00') 
   
   size = len(name) 
   ind = ((((0xFFFFFFFF84210843 * size) // 2 ** 32) + size) % (2 ** 
32) // 16) 
   ind = ind + ind // 2 ** 31 
   ind = size - ind * 31 
 
   for i in range(len(name)): 
       key_i = key[ind] 
       name[i] ^= key_i 
       ind += 1 
       tmp = ( 0x8421085 * ind ) // 2**32 
       ind -= (((ind - tmp) // 2 + tmp) // 16) * 0x1F 
 
       
   return name 
 

Spork	rules	viewer 
As	mentioned	above,	spork	contains	serialized	rules	used	by	rules	engine	to	check	which	PSP	is	
installed.	This	script	prints	rules	in	readable	view	for	two	types	of	databases	(6	or	8	bytes	per	rule):	 
import argparse 
import struct 
 
def get_byte(data, offset): 
   byte_range = data[offset : offset + 1] 
   return struct.unpack('<B', byte_range)[0] 
 
def get_short(data, offset): 
   byte_range = data[offset : offset + 2] 
   return struct.unpack('<H', byte_range)[0] 
 

class rule: 
   rule_size = 8 
   def __init__(self, raw_rule): 
 
       self.index_process_name = get_byte(raw_rule, 0) 
       self.index_process_to_inject = [get_byte(raw_rule, 1)] 
 
       offset = 0 
       if rule_size == 8: 
           offset = 2 
           if get_byte(raw_rule, 2) != 0: 



               self.index_process_to_inject.append(get_byte(raw_rule
, 2)) 
           if get_byte(raw_rule, 3) != 0: 
               self.index_process_to_inject.append(get_byte(raw_rule
, 3)) 
 

       self.min_version = get_byte(raw_rule, 2 + offset) 
       self.max_version = get_byte(raw_rule, 3 + offset) 
       self.flags = get_byte(raw_rule, 4 + offset) 
       self.type_of_action = get_byte(raw_rule, 5 + offset) 
 

class rule_db: 
   def __init__(self, input_file): 
       data = bytearray(open(input_file, "rb").read()) 
 
       self.rules_count = get_byte(data, 0) 
       self.strings_count = get_byte(data, 1) 
       self.rules = [] 
 
       for i in xrange(self.rules_count): 
           self.rules.append(rule(data[2 + i * rule.rule_size : 2 + 
i * rule.rule_size + rule.rule_size])) 
 
       self.offsets = [] 
       self.strings = [] 
       for i in xrange(self.strings_count): 
           self.offsets.append(get_short(data, 2 + self.rules_count 
* rule.rule_size + i * 2)) 
           curr = start = self.offsets[i] 
           while data[curr] != 0: 
               curr += 1 
           self.strings.append(str(data[start : curr])) 
 
   def print_info(self): 
       for rule in self.rules: 
           process_to_inject = 'svchost.exe' 
           if rule.type_of_action == 1: 
               process_to_inject = 'error' 
           elif rule.type_of_action == 2: 
               process_to_inject = 
self.strings[rule.index_process_name] 
           elif rule.type_of_action == 3: 
               process_to_inject = 'lsass.exe' 
           elif rule.type_of_action == 4: 
               process_to_inject = 'winlogon.exe' 
           elif rule.type_of_action == 6: 
               process_to_inject = '/'.join([self.strings[i] for i 
in rule.index_process_to_inject]) 
           bitness = 'x32-x64' 
           if rule.flags == 1: 
               bitness = 'x32' 
           elif rule.flags == 2: 
               bitness = 'x64' 



           print ('PSP: %s\tversion: %02x-%02x\tbitness: %s\ttarget: 
%s' % (self.strings[rule.index_process_name], rule.min_version, 
rule.max_version, bitness, process_to_inject) ) 
 

parser = argparse.ArgumentParser() 
parser.add_argument('input_file') 
args = parser.parse_args() 
 

for rule_size in [8, 6]: 
   try: 
       rule.rule_size = rule_size 
       db = rule_db(args.input_file) 
       db.print_info() 
       break 
   except: 
       continue 
 
 

Appendix	II	-	Indicators	of	compromise 
 

MD5 
042cc382acb5b2b70c78baa77bb7c5f9 
11ccc2c5811c80f2a796817d9ccbe34b 
142970f7e10e3a49e583b2f557dcbe79 
64f705e55545a371e0f5e599cfbae5e9 
6637dbcc6059a1e2e45956d98a3ea590 
706269c041d94c4501b78c128f1c0e70 
7fb82333aa08f4bfbbfa515e7e93bad4 
87a28a99697452a37fc229b3aa3afe97 
afaff3310d8c094774da6ba856c1a30e 
b7a2525e05769540f48733d5673a77fa 
c638169aaa777d4f6eae43205a39e274 
db71aed3b9ffbbfa4c49db036520ceeb 
f4944c5d47907ce93819aed8c4f76bcc 
 
More	indicators	are	available	to	Kaspersky	Lab	private	report	subscribers.	Please	contact	
intelreports@kaspersky.com 

	


