
Uroburos: the snake rootkit

deresz@gmail.com tecamac@gmail.com

March 12, 2014

Abstract

This is a technical analysis of a unique, very powerful and covert remote access
backdoor used in targeted attacks. This rootkit has been designed and coded by
very skilled and experienced programmers. The techniques used demonstrate their
excellent knowledge of Windows kernel internals. The paper describes the use of
undocumented and clever tricks performed on the running Windows kernel such as
on-the-fly disassembling or PatchGuard bypassing. It details how the covert commu-
nication channels work (although this part requires a lot of further analysis) and how
the virtual encrypted storage is implemented.

The document has been created to raise awareness - its goal is to enhance un-
derstanding of this (and potentially similar) threats as well as to provide means of
protection against it. The indicators of compromise (IOCs) are provided to scan for
the presence of this malware in computer systems.

Contents

1 Initialization 3
1.1 Injection . 3
1.2 Instantiation check . 3
1.3 Image copy and relocations . 5
1.4 Hiding the child image . 5
1.5 Setup persistence . 6
1.6 Force kernel mode . 6

2 Hooking 7
2.1 Hooking engine . 7

2.1.1 Creation of the interrupt C3h . 7
2.1.2 Self-hooking bypass . 8

2.2 Bypass the PatchGuard . 11
2.2.1 Cancel PatchGuard notification hooking KeBugCheck 12
2.2.2 Replay PatchGuard DPC hooking KxDispatchInterrupt 13

2.3 Hooking payload . 14
2.3.1 Inline hooking . 14
2.3.2 Device hooking: IofCallDriver . 14

3 Communication framework 15
3.1 Communication objects . 15
3.2 Communication channels . 17
3.3 Hardcoded channels . 19
3.4 Channels initialized from the queue . 20

1

3.5 Low level communications(TODO) . 20
3.6 Command listener via TDI hooking . 20
3.7 Tainted traffic processing . 21

3.7.1 The Checksum . 22
3.7.2 DEADBEAF-style . 22

3.8 Network footprint . 22

4 Virtual file systems 24
4.1 Description . 24
4.2 Persistent file system . 25

4.2.1 Setup a section backed by a file. 25
4.2.2 Bind the section with a device. 26

4.3 Volatile file system . 27
4.3.1 Bind the the device to the backing section 27
4.3.2 Initialize FAT file system. 27

4.4 Encrypted IO. 27
4.5 Extraction . 27

4.5.1 Live extraction . 27
4.5.2 Offline extraction . 28

5 Bootstrap: the queue file 29

6 Userland components 30
6.1 inj snake Win32.dll - main module . 30
6.2 inj services Win32.dll . 31
6.3 rkctl Win32.dll - rootkit control module 31

A List of int C3h handlers (TODO) 31

B Supporting functions 31
B.1 PE image mapping (TODO) . 31
B.2 Relocation algorithm . 31
B.3 Get module reference . 33
B.4 Get procedure address (TODO) . 34

Samples

f4f192004df1a4723cb9a8b4a9eb2fbf 32bit driver

ed785bbd156b61553aaf78b6f71fb37b 64bit driver

The 32bit and 64bit versions are very similar except some functionalities like the
PatchGuard bypassing method that is not necessarily present on the 32bit version. As it
is more convenient to reverse, the 32bit version will be presented and we would switch to
the 64bit version when necessary.

Yara detection rules

rule snake_packed

{

2

md5 = "f4f192004df1a4723cb9a8b4a9eb2fbf"

strings:

/*

25 FF FF FE FF and eax, 0FFFEFFFFh

0F 22 C0 mov cr0, eax

C0 E8 ?? ?? 00 00 call sub_????

*/

$cr0 = { 25 FF FF FE FF 0F 22 C0 E8 ?? ?? 00 00}

condition:

any of them

}

rule snake

{

md5 = "40aa66d9600d82e6c814b5307c137be5"

strings:

$ModuleStart = { 00 4D 6F 64 75 6C 65 53 74 61 72 74 00 }

$ModuleStop = { 00 4D 6F 64 75 6C 65 53 74 6F 70 00}

$firefox = "firefox.exe"

condition:

all of them

}

1 Initialization

1.1 Injection

The driver hides its execution by injecting the code into the system process and exiting
its initial process.

The execution is manually forked as a system thread in function fork and hide (1D75Ah).
Specifically the mechanism is similar to a vfork on Unix systems; the parent image is sus-
pended until the child image releases the execution thread. It is composed of three steps.
(i) The instantiation check verifies that no other rootkit instance is running. This is de-
scribed in Section 1.2r. (ii) Section 1.3 details the image copy. It makes the code resident
in non-paged memory so that it can run as a system thread. (iii) Finally, the control is
transferred to the cloned image, in return the child image is hidden by zeroing its headers,
see Section 1.4. As a result, the rootkit runs in a kernel thread with code in non-paged
memory. Note that this thread has a non existent owning process. This can be used as
an IOC; owning process of any thread usually does exist.

1.2 Instantiation check

The presence of another rootkit instance is verified in reinfection check (1D460h). This
function checks against the presence of the of three events. If one is observed the error
STATUS OBJECT NAME EXISTS is returned.

� pr

� \BaseNamedObjects\{B93DFED5-9A3B-459b-A617-59FD9FAD693E} 1

1This infection marker was observed to be created by a different version of this toolkit aka Agent.BTZ.

3

T
ab

le
1:

In
d

ic
at

or
s

of
co

m
p

ro
m

is
e

L
o
ca

ti
o
n

T
y
p

e
V

a
lu

e
C

o
m

m
en

t

P
h
y
si

ca
l

M
em

o
ry

E
v
en

t
\
B
a
s
e
N
a
m
e
d
O
b
j
e
c
t
s
\
{
B
9
3
D
F
E
D
5
-
9
A
3
B
-
4
5
9
b
-
A
6
1
7
-
5
9
F
D
9
F
A
D
6
9
3
E
}

In
fe

ct
io

n
m

a
rk

er

P
h
y
si

ca
l

M
em

o
ry

E
v
en

t
\
B
a
s
e
N
a
m
e
d
O
b
j
e
c
t
s
\
s
h
e
l
l
.
{
F
2
1
E
D
C
0
9
-
8
5
D
3
-
4
e
b
9
-
9
1
5
F
-
1
A
F
A
2
F
F
2
8
1
5
3
}

In
fe

ct
io

n
m

a
rk

er

P
h
y
si

ca
l

M
em

o
ry

E
v
en

t
\
B
a
s
e
N
a
m
e
d
O
b
j
e
c
t
s
\
w
i
n
i
n
e
t
_
a
c
t
i
v
a
t
e

R
el

a
te

d
to

o
u
tb

o
u
n
d

n
et

w
o
rk

fl
ow

in
te

rc
ep

ti
o
n

P
h
y
si

ca
l

M
em

o
ry

K
er

n
el

th
re

a
d

P
re

se
n
ce

o
f

a
k
er

n
el

th
re

a
d

w
it

h
n
o
n
-e

x
is

te
n
t

ow
n
in

g
p
ro

ce
ss

.
T

h
is

is
co

n
se

q
u
en

ce
o
f

th
e

k
er

n
el

in
je

ct
io

n

P
h
y
si

ca
l

M
em

o
ry

In
te

rr
u
p
t

0
x
5
5

C
u
st

o
m

in
te

rr
u
p
t

u
se

d
b
y

th
e

h
o
o
k
in

g
en

g
in

e

P
h
y
si

ca
l

M
em

o
ry

In
te

rr
u
p
t

0
x
C
3

C
u
st

o
m

in
te

rr
u
p
t

u
se

d
b
y

th
e

h
o
o
k
in

g
en

g
in

e

P
h
y
si

ca
l

M
em

o
ry

D
ev

ic
e

\
D
e
v
i
c
e
\
R
a
w
D
i
s
k
1

D
ev

ic
e

re
la

te
to

th
e

ro
o
tk

it
’s

v
ir

tu
a
l

fi
le

sy
st

em

P
h
y
si

ca
l

M
em

o
ry

D
ev

ic
e

\
D
e
v
i
c
e
\
R
a
w
D
i
s
k
2

D
ev

ic
e

re
la

te
to

a
se

co
n
d

v
ir

tu
a
l

fi
le

sy
st

em
th

a
t

o
n
ly

re
si

d
e

in
p
h
y
si

ca
l

m
em

o
ry

a
n
d

n
o
t

fl
u
sh

ed
to

fi
le

sy
st

em

R
eg

is
tr

y
K

ey
\
R
e
g
i
s
t
r
y
\
M
a
c
h
i
n
e
\
S
y
s
t
e
m
\
C
u
r
r
e
n
t
C
o
n
t
r
o
l
S
e
t
\
S
e
r
v
i
c
e
s
\
U
l
t
r
a
3

R
o
o
tk

it
a
u
to

ru
n
,

th
is

IO
C

ca
n

p
re

se
n
t

a
fa

ls
e

p
o
si

ti
v
e;

if
p
re

se
n
t

th
e

ex
ec

u
te

d
fi
le

n
ee

d
to

b
e

ch
ec

k
ed

R
eg

is
tr

y
K

ey
\
R
e
g
i
s
t
r
y
\
M
a
c
h
i
n
e
\
S
y
s
t
e
m
\
C
u
r
r
e
n
t
C
o
n
t
r
o
l
S
e
t
\
S
e
r
v
i
c
e
s
\
~
R
O
O
T

R
o
o
tk

it
a
u
to

ru
n
,

th
is

IO
C

ca
n

p
re

se
n
t

a
fa

ls
e

p
o
si

ti
v
e;

if
p
re

se
n
t

th
e

ex
ec

u
te

d
fi
le

n
ee

d
to

b
e

ch
ec

k
ed

F
il
e

sy
st

em
F

il
en

a
m

e
\
%
S
y
s
t
e
m
R
o
o
t
%
\
$
N
t
u
n
i
n
s
t
a
l
l
Q
8
1
7
4
7
3
$
\
h
o
t
f
i
x
.
d
a
t

V
ir

tu
a
l

fi
le

sy
st

em
,

m
u
st

b
e

ch
ec

k
ed

q
u
er

y
in

g
m

fc
d
i-

re
ct

ly
b

ec
a
u
se

fi
le

A
P

I
ca

n
b

e
h
o
o
k
ed

F
il
e

sy
st

em
F

il
es

iz
e

1
0
4
8
5
7
6
0
0

T
h
e

d
ef

a
u
lt

si
ze

o
f

th
e

fi
le

b
a
ck

in
g

th
e

v
ir

tu
a
l
fi
le

sy
st

em
,

m
u
st

b
e

ch
ec

k
ed

q
u
er

y
in

g
m

fc
d
ir

ec
tl

y
b

ec
a
u
se

fi
le

A
P

I
ca

n
b

e
h
o
o
k
ed

F
il
e

sy
st

em
F

il
en

a
m

e
\
%
S
y
s
t
e
m
R
o
o
t
%
\
$
N
t
u
n
i
n
s
t
a
l
l
Q
8
1
7
4
7
3
$
\
v
i
r
t
d
i
s
k
.
b
i
n

V
ir

tu
a
l

fi
le

sy
st

em
,

m
u
st

b
e

ch
ec

k
ed

q
u
er

y
in

g
m

fc
d
i-

re
ct

ly
b

ec
a
u
se

fi
le

A
P

I
ca

n
b

e
h
o
o
k
ed

F
il
e

sy
st

em
F

il
en

a
m

e
\
%
S
y
s
t
e
m
R
o
o
t
%
\
$
N
t
u
n
i
n
s
t
a
l
l
Q
8
1
7
4
7
3
$
\
f
d
i
s
k
.
s
y
s

R
o
o
tk

it
,

m
u
st

b
e

ch
ec

k
ed

q
u
er

y
in

g
m

fc
d
ir

ec
tl

y
b

ec
a
u
se

fi
le

A
P

I
ca

n
b

e
h
o
o
k
ed

F
il
e

sy
st

em
F

il
en

a
m

e
\
%
S
y
s
t
e
m
R
o
o
t
%
\
$
N
t
u
n
i
n
s
t
a
l
l
Q
8
1
7
4
7
3
$
\
r
k
n
g
_
i
n
s
t
.
e
x
e

R
o
o
tk

it
,

m
u
st

b
e

ch
ec

k
ed

q
u
er

y
in

g
m

fc
d
ir

ec
tl

y
b

ec
a
u
se

fi
le

A
P

I
ca

n
b

e
h
o
o
k
ed

.

F
il
e

sy
st

em
V

o
lu

m
e

\
\
.
\
H
d
1
\
\

V
o
lu

m
e

a
ss

o
ci

a
te

d
to

th
e

v
ir

tu
a
l

fi
le

sy
st

em

F
il
e

sy
st

em
V

o
lu

m
e

\
\
.
\
H
d
2
\
\

V
o
lu

m
e

a
ss

o
ci

a
te

d
to

th
e

v
ir

tu
a
l

fi
le

sy
st

em
th

a
t

o
n
ly

re
si

d
es

in
m

em
o
ry

F
il
e

sy
st

em
P

a
rt

it
io

n
T

h
e

p
a
rt

it
io

n
u
se

d
a
s

v
ir

tu
a
l
fi
le

sy
st

em
b
y

th
e

ro
o
tk

it
h
a
s

a
p

ec
u
li
a
r

se
tt

in
g

to
m

a
k
e

th
e

p
a
rt

it
io

n
st

ea
lt

h
y

fo
r

m
o
st

a
p
p
li
ca

ti
o
n
s.

T
h
o
se

se
tt

in
g
s

ca
n

b
e

u
se

d
a
s

IO
C

se
e

S
ec

ti
o
n

4
.2

.2

N
et

w
o
rk

N
a
m

ed
p
ip

e
\
\
.
\
p
i
p
e
\
i
s
a
p
i
_
d
g

N
a
m

ed
p
ip

e
u
se

d
fo

r
in

te
rn

a
l

co
m

m
u
n
ic

a
ti

o
n
s

N
et

w
o
rk

N
a
m

ed
p
ip

e
\
\
.
\
p
i
p
e
\
i
s
a
p
i
_
d
g
{
1
-
4
}

N
a
m

ed
p
ip

es
u
se

d
fo

r
in

te
rn

a
l

co
m

m
u
n
ic

a
ti

o
n
s

N
et

w
o
rk

N
a
m

ed
p
ip

e
\
\
.
\
p
i
p
e
\
i
s
a
p
i
_
h
t
t
p

N
a
m

ed
p
ip

e
u
se

d
fo

r
in

te
rn

a
l

co
m

m
u
n
ic

a
ti

o
n
s

N
et

w
o
rk

N
a
m

ed
p
ip

e
\
\
.
\
p
i
p
e
\
i
s
a
p
i
_
h
t
t
p
{
1
-
3
}

N
a
m

ed
p
ip

es
u
se

d
fo

r
in

te
rn

a
l

co
m

m
u
n
ic

a
ti

o
n
s

N
et

w
o
rk

N
a
m

ed
p
ip

e
\
\
.
\
p
i
p
e
\
s
e
r
v
i
c
e
s
_
c
o
n
t
r
o
l

N
a
m

ed
p
ip

e
u
se

d
fo

r
in

te
rn

a
l

co
m

m
u
n
ic

a
ti

o
n
s

N
et

w
o
rk

N
a
m

ed
p
ip

e
\
\
.
\
p
i
p
e
\
w
i
n
i
n
e
t
_
a
c
t
i
v
a
t
e

N
a
m

ed
p
ip

e
u
se

d
fo

r
in

te
rn

a
l

co
m

m
u
n
ic

a
ti

o
n
s

N
et

w
o
rk

F
in

g
er

p
ri

n
t

F
o
r

S
M

T
P

:
in

a
d
d
re

ss
es

li
k
e

u
se

rn
a
m

e@
d
o
m

a
in

w
it

h
N

th
e

le
n
g
th

o
f

u
se

rn
a
m

e,
th

e
(N

-1
)t

h
ch

a
r

o
f

th
e

u
se

rn
a
m

e
h
a
s

A
S
C

II
co

d
e

9
7
+

(s
u
m

/
2
6
)

a
n
d

th
e

(N
)t

h
ch

a
r

a
sc

ii
co

d
e

is
1
2
2
-(

su
m

/
2
6
)

w
h
er

e
su

m
is

th
e

su
m

o
f

th
e

A
S
C

II
co

d
es

o
f

th
e

fi
rs

t
8

u
se

rn
a
m

e
ch

a
rs

N
et

w
o
rk

F
in

g
er

p
ri

n
t

F
o
r

b
a
se

6
4

H
T

T
P

h
ea

d
er

s:
a
ft

er
b
a
se

6
4

d
ec

o
d
in

g
,

th
e

9
th

ch
a
r

o
f

th
e

u
se

rn
a
m

e
h
a
s

A
S
C

II
co

d
e

9
7
+

(s
u
m

/
2
6
)

a
n
d

th
e

1
0
th

ch
a
r

A
S
C

II
co

d
e

is
1
2
2
-(

su
m

/
2
6
)

w
h
er

e
su

m
is

th
e

su
m

o
f

th
e

A
S
C

II
co

d
es

o
f

th
e

fi
rs

t
8

ch
a
rs

N
et

w
o
rk

F
in

g
er

p
ri

n
t

F
o
r

ra
w

d
a
ta

:
a
ft

er
b
a
se

6
4

d
ec

o
d
in

g
,

th
e

9
th

ch
a
r

o
f

th
e

u
se

rn
a
m

e
h
a
s

A
S
C

II
co

d
e

9
7
+

(s
u
m

/
2
6
)

a
n
d

th
e

1
0
th

ch
a
r

A
S
C

II
co

d
e

is
1
2
2
-(

su
m

/
2
6
)

w
h
er

e
su

m
is

th
e

su
m

o
f

th
e

A
S
C

II
co

d
es

o
f

th
e

fi
rs

t
8

ch
a
rs

4

� \BaseNamedObjects\shell.{F21EDC09-85D3-4eb9-915F-1AFA2FF28153}2

Only the later event is created in the case no others are observed. It is believed that
the former ones are infection markers of previous versions of the rootkit. It is worth to
mention that such infection markers constitute valuable IOCs.

� \BaseNamedObjects\shell.{F21EDC09-85D3-4eb9-915F-1AFA2FF28153}

If no infection marker is observed then the above event is created.

1.3 Image copy and relocations

A fork requires to copy the current driver image. For this, non-paged pool with the tag
NtFs and a size that fits the rootkit image is allocated. The image is then copied over
there. The tag NtFs cannot be considered as a relevant IOC as it is associated with
Windows StrucSup.c which seems responsible for file management.

The main issue with such a copy is that the base address of the image changes and all
static references are invalidated. This is cleanly handled via proper relocations defined
in the .reloc section; the rootkit embeds a relocation routine described in the remainder
of this section. Usually, malware handles this by writing to the injected memory, it is
much more pragmatic and sustainable to do it via such an appropriate relocation. Indeed,
relocations are automatically generated by compilers; reusing this for relocation prevents
forgetting to remap newly created static values across development versions.

The function PE do relocation (5B270h) partially implements the relocation algorithm
for portable executables3. It implements most of the relocation types but the MIPS and
48bit addresses relocations. This function is detailed in Section B.2

1.4 Hiding the child image

The control is passed to the newly created child image calling its entry point at 1D6D3h.
Upon success, the headers of the child image are zeroed out as on the following listing.
This makes the carving of the rootkit’s portable executable difficult.

loc_1D6EA

mov eax, [ebp+size_of_headers]

add eax, 1

mov [ebp+size_of_headers], eax

loc_1D6F3:

mov ecx, [ebp+my_image_copy] ; screw the headers

mov edx, [ecx+IMAGE_DOS_HEADER.e_lfanew]

mov eax, [ebp+my_image_copy]

mov ecx, [eax+edx+IMAGE_NT_HEADERS.OptionalHeader.SizeOfHeaders]

shr ecx, 2

cmp [ebp+size_of_headers], ecx

jnb short loc_1D717

mov edx, [ebp+size_of_headers]

mov eax, [ebp+my_image_copy]

mov dword ptr [eax+edx*4], 0

jmp short loc_1D6EA

2This value is stored encrypted, decryption at 2B550h consists in a byte per byte xor of memory
8BB88h and 8BBC8h. Several other strings are stored the same way, that is xor split into two locations
with a 40h byte offset.

3See “Microsoft Portable Executable and Common Object File Format Specification” section 6.6 for a
full description

5

Figure 1: Snake advanced assembly manipulation when relocating the code.

Finally the main thread just returns causing the termination of the process. The
rootkit runs in a kernel thread with code in non-paged memory. This method has a
limitation: the owning process of this system thread does not exist anymore. This is an
anomaly that can be used as a relevant IOC. Indeed, according to the authors experience
the owning process of a legitimate system thread usually exists.

1.5 Setup persistence

TODO: describe setup persistence rootkit init (15CA0h)

1.6 Force kernel mode

The rootkit will interact between user-mode and kernel-mode. Such interaction is delicate;
in particular several system calls behave slightly differently when called from each mode.
On such calls, the system traps the caller and uses the routine ExGetPreviousMode to
determine whether the parameters are from a user-mode or kernel-mode source.

Managing the situation can become difficult in the current rootkit where user mode
modules need to be orchestrated via a messaging service. The authors believe this is the
reason why the rootkit authors wrote wrappers for several system calls forcing kernel-
mode before their execution.

For example on Windows 2003, the code of ExGetPreviousMode is quite simple, it just
gets and returns the PreviousMode value

.text:0044086C mov eax, large fs:124h

.text:00440872 mov al, [eax+0D7h]

.text:00440878 retn

From this, two directives are built which set the previous mode [fs:124h+0D7h] appro-
priately: set kernelmode (8E070h) and set usermode (8E074h).

The tricky part is that the code may change across Windows versions. The cur-
rent rootkit implements an easy solution for this issue: it disassembles ExGetPrevious-
Mode, copies each instruction to the generated directive until the last return, and replaces
mov al, [eax+0D7h] by mov [eax+0D7h] MODE where the D7 is dynamically computed
according to the disassembly process and MODE is the requested mode (see Figure 1).

For example, on Windows 2003 the rootkit generates the following directives:

set_kernelmode:

mov eax, large fs:124h

mov [eax+0D7h] 0

6

retn

set_usermode:

mov eax, large fs:124h

mov [eax+0D7h] 1

retn

TODO: Describe the process for Windows 7 and 2008 server
The disassembly is achieved with the support of Udis86 4

Before actually doing this there is a last tricky part. The instructions of ExGetPrevi-
ousMode are in pageable memory. This can cause issues while accessing the buffer, and
we do not want to handle page faults. Windows uses MDL5 to describe the physical page
layout for a virtual memory buffer. This layout can be fixed by calling MmProbeAnd-
LockPages which makes the pageable memory non-paged until the MDL is unlocked.

The directives are created in ExGetPreviousMode patch setup (1B3B0h). The system
module ntoskrnl.exe, where ExGetPreviousMode resides, was saved in the rootkit context
at 1D328h using the look module function described in Section B.3. The system export for
ExGetPreviousMode is obtained from the custom getprocaddress detailed in Section B.4
and its pages are locked in physical memory. The code is disassembled linearly, copying
the code to the directive memory and saving second operand values of the last disassem-
bled instruction. When a return instruction is encountered, the preceding instruction is
replaced with the following opcodes where the last op2 is a double word corresponding to
the saved second operand value of the instruction proceeding the return instruction.

C6h 80h last_op2 00h C3h // mov byte ptr [eax+last_op2], 0 ; ret

A dual code is created for user mode. In user mode, the resulting system call wrappers
simply call set kernelmode as prologue and set usermode as epilogue.

2 Hooking

2.1 Hooking engine

The hooking engine is very pragmatic, it relies on a custom interrupt (C3h). When a
location is to be hooked, the instructions that cover the first four bytes are relocated to
a handler structure. A callback is also set in this structure and the structure is inserted
in a table handler table (9A75C) where it is associated to an ID.

The target location is hooked replacing the first four following bytes with push h; int C3h

where h is a handler identifier.

2.1.1 Creation of the interrupt C3h

The routine which sets the interrupt payload, gate set (63BA0), has two functional modes.

Mode 0 : Set a gate to a routine, the gate and the routine are provided as argument.

Mode 1 : Reset gate to original value, the value is provided as argument.

4One of the authors was lucky on this part of the reverse engineering process, recognizing Udis86 by
chance. The library is not really linked, but parts of the source code were included. Further information
about Udis86 can be obtain at http://udis86.sourceforge.net/.

5Memory Descriptor List

7

Saving IDT and GDT from all processors. As each processor has its own interrupt
table, the main issue is to actually execute the code on the target processor. For this,
the routine launch on cpu (1A6A0h) first locks the execution on the current CPU raising
IRQL to DPC level and gets the CPU number via movzx eax, large byte ptr fs:51h

launched as a DPC on the targeted CPU
In order to collect the IDT and the GDT on each CPU, the code simply uses the later

function with sidt and sgdt based routines, iterating over all processors via a loop on
the number of processor: KeNumberofProcessors.

Setting the interrupt Under mode 0, the selected gate (C3h) payload is registered,
setting the appropriate flags for code execution:

mov ecx, [ebp+routine]

shr ecx, 10h

mov [ebp+gate.offset_high], cx

mov dx, word ptr [ebp+routine]

mov [ebp+gate.offset_low], dx

mov al, [ebp+gate.type]

or al, P_IS_USED ; set used

mov [ebp+gate.type], al

mov cl, [ebp+gate.type]

and cl, not (DPL_RING_1 or DPL_RING_2) ; set RING 0

mov [ebp+gate.type], cl

mov [ebp+gate.segment], 8

mov dl, [ebp+gate.type]

or dl, IS_CODE ; set code

mov [ebp+gate.type], dl

mov al, [ebp+gate.type]

and al, not (ACCESSED or CODE_EXECUTABLE or CODE_CONFORMING)

or al, CODE_EXECUTABLE or CODE_CONFORMING

mov [ebp+gate.type], al

mov [ebp+gate.type_word], 0

mov cl, [ebp+gate.type]

and cl, not (S) ; set data/code

mov [ebp+gate.type], cl

2.1.2 Self-hooking bypass

As presented in the previous section, the rootkit includes a system wide hooking primi-
tive. Such a hooking can be troublesome for some APIs internally used by the rootkit.
For example, if accessing registry keys are prevented, then the rootkit itself may have dif-
ficulties accessing these registry keys, too. This is the assumed reason why five hooking
bypasses are implemented on the following APIs.

� ExAllocatePoolWithTag

� ExFreePoolWithTag

� ZwCreateKey

� ZwSetValueKey

� ZwOpenProcess

� ZwTerminateProcess

8

The bypass technique heavily relies on the relocation engine described in Section 1.6. The
disassembly is not done on the real image of ntoskrnl but on a non paged copy. In the
same manner a non paged copy of the KiServiceTable is obtained. One possible reason for
this is stability and performance. A second reason is stealthiness, read access to ntosimage
is unlikely to be legitimate

Copying ntoskrnl image. PE load ntoskrnl (62220h) obtains the file path and the
base address of ntoskrnl.exe via the first module in the structure SYSTEM MODULE INFORMATION
accessed querying ZwQuerySystemInformation on class SystemModuleInformation (1Bh).
This information is passed down to PE load from system file (5C520h) where the portable
executable format is parsed and mapped into memory according to the process described
in Section B.1 and relocated according to the algorithm described in Section B.2. Note
that the IAT is not fixed.

The resulting copy is saved at ntoskrnl local image (9A750h).

Copying the serice table. The function KiServiceTable copy 61D40h creates a copy
of the service table using the local copy of ntoskrnl. For this the Service table descriptor
(SDT) is obtained via the system call KeServiceDescriptorTable, it has the following
structure:

00000000 SDT struc ; (sizeof=0x40)

00000000 ntoskrnl SSDT ?

00000010 used_or_win32k SSDT ?

00000020 iis_spud SSDT ?

00000030 unused SSDT ?

00000040 SDT ends

00000000 SSDT struc ; (sizeof=0x10)

00000000 service_table_baseadd dd ?

00000004 counter_table_baseadd dd ?

00000008 service_limit dd ?

0000000C arg_table dd ?

00000010 SSDT ends

The first entry of the SDT provides the system service descriptor table (SSDT) for
ntoskrnl, and the first field of the later structure provides the base address of the service
table in the loaded image of ntoskrnl.

It appears that this method may fail to obtain an address out of the image bound.
In this case the code implements fallback cribling the image of ntoskrnl for the following
instruction.

mov ds:SDT offset // C7h 05h Offset

Each word of the image is compared with 5C7h. On a match, the next double word
is taken as a KiServiceTable candidate. This is confirmed verifying that the last service
is in the image bound.

mov ecx, [ebp+SDT]

mov edx, [ecx+SDT.ntoskrnl.service_limit]

mov eax, [ebp+KiServiceTable]

lea ecx, [eax+edx*4]

mov edx, ntoskrnl_local_image

add edx, [ebp+ntoskrnl_imagesize]

cmp ecx, edx

jnb short loc_61E37

9

When a sound service table pointer is identified, its counter-part in the local copy of
the ntoskrnl image is saved at KiSeviceTable copy (9A74Ch).

Starting stub relocation. The idea behind the bypass of ExAllocatePoolWithTag and
ExFreePoolWithTag consists of relocating the beginning of the function where the hooking
should be applied if the function is hooked. Executing the relocation would then bypass
the hook. The length of the hook is hardcoded to six bytes, then the relocation only
applies to the six first bytes.

The relocation engine relocate code (625E0) is also based on Udis86, it takes as input
the start address and the length of the buffer to disassemble and the relocation offset to
apply.

First, the buffer is disassembled linearly from the starting relocation address until the
number of disassembled bytes is greater or equal to the requested relocation size. If a
return instruction is encountered during this stage, the function exits with a failure error
code.

This disassembled stub is relocated during a second stage. The mechanism transforms
any relative branch into an absolute branch applying the offset. Concerning absolute
branches, the offset is simply applied. In other terms, sequential instructions are just
copied as it is, and the following rewriting rules are applied to branching instructions,
where o is the relocation offset, a an offset, A an absolute address, @ the address of the
rewritten instruction, B = @ + a + o and C = A + o.

Unconditional relative jump

@:jmp a � push B; ret

Unconditional absolute jump

@:jmp A � jump C; ret

Unconditional absolute call

@:call A � call C; ret

Conditional jump

@:jcc a � jcc +2; push B; ret

Note: This translation seems buggy; the authors are not sure about the interpreta-
tion of this part of the code. The natural would rather be the following, as jnc is
the negated conditional jump jcc

@:jcc a � jnc +6; push B; ret

Trap to debugger On Windows XP, the fist byte of the relocated code is set to 8bh.
On Windows 2000, the first byte is set to 55h. The authors do not understand this
relocation rule.

When the relocation is terminated, the resulting code is finalized with a push D where
D is the is the end of the relocated buffer with the relocation offset applied.

This relocation algorithm is very limited and definitely error prone in some cases like
backward jumps or jumps to register values. But considering that this is applied to small
pieces of code, this algorithm should work most of the time.

10

This bypassing mechanism seems to be designed for pre-Windows XP systems. Con-
sidering modern PatchGuard, inline hooking may have been removed making this part of
the code unnecessary.

Note: the x64 version is simpler, it only does relocation for conditional and uncondi-
tional relative jumps, substituting jmp o�jmp ptr [rip + 6 + O] where a is an offset,
o is the relocation offset and O = a + o.

Service gate relocation. Almost the same technique is used for ZwCreateKey, ZwSet-
ValueKey, ZwOpenProcess and ZwTerminateProcess. The main difference is that those
API functions are redirections to the global service handler. Here the bypass consists of
the relocation of the service routine, bypassing the service manager.

Indeed, those functions have the following form, where service is the requested service
and manager - the global manager.

mov eax, service

lea edx, [esp+4]

pushf

push 8

call manager

retn 1Ch

The code first parses the function to obtain the service. This is achieved in get service id
(61BD0h) where Udis86 is used to search for the pattern mov eax,. On the first match,
the second operand is decoded and saved as the requested service.

Secondly, the service routine is collected from the copy of the KiServiceTable and the
API function address is localized in the copy of the ntoskrnl image.

loc_61868:

mov eax, [ebp+service]

mov ecx, KiSeviceTable_copy

mov edx, [ecx+eax*4]

sub edx, ntoskrnl_imagebase

add edx, ntoskrnl_local_image

mov [ebp+routine], edx

Finally, the starting stub of the routine is relocated using the same code as for ExAl-
locatePoolWithTag and ExFreePoolWithTag.

2.2 Bypass the PatchGuard

This section relies on the 64bit sample.

ed785bbd156b61553aaf78b6f71fb37b 64bit driver

The x64 version of PatchGuard prevents the installation of the hooking mechanism. As
a result, the x64 version of the rootkit implements a PatchGuard bypass. The technique is
based on a KeBugCheckEx hook similar to the one described in Uninformed6as by skape
(mmiller@hick.org) and Skywing (Skywing@valhallalegends.com). The idea is to abuse
the validation reporting mechanism based on a bug check reported with code 109h.

6http://uninformed.org/index.cgi?v=3&a=3&p=17

11

2.2.1 Cancel PatchGuard notification hooking KeBugCheck

The bypass is fully based on the hooking engine previously described with insertion of an
int C3h and the relocation of the overwritten code. Two callbacks are placed, the first
one in RtlContextCapture. This callback is actually used to hook KeBugCheck, of which
the code is saved at PatchGuard initialization and overwritten when signaling an integrity
issue. This is well described in the following article:

http://www.codeproject.com/Articles/28318/Bypassing-PatchGuard-3

The mechanism is simple: check if RtlContextCapture was called by PatchGuard no-
tification, checking if the return address is in the first 64h bytes of KeBugCheck and that
the bug code is 109h.

loc_163A1:

mov rax, cs:KeBugcheckEx_address

cmp rdx, rax

jb loc_1648F

add rax, 64h

cmp rax, rdx

jb loc_1648F

cmp ecx, 109h ; patchguard reporting code

jnz loc_1648F

If the IRQL is passive then the code is in a worker and it is enough to restore the
worker entry point context so that the worker goes back to processing other work items.
This is enough to cancel the bug check. We do not have to worry about the context as
all is stored in it statically.

Before resetting the worker a do nothing DPC is launched. This may be to ensure
that the worker has something to process.

loc_1640D:

mov rsi, [rax+r11] ; worker start address

call cs:IoGetInitialStack ; get stack pointer

mov cl, gs:52h ; get current CPU

movzx ebx, cl

mov rcx, cs:DPC_cpu_table

lea rdx, do nothing ; do nothing

mov rdi, rbx

xor r8d, r8d ; no context

mov rbp, rax

shl rdi, 6

add rcx, rdi

call cs:KeInitializeDpc

mov r11, cs:DPC_cpu_table

mov dl, bl

lea rcx, [rdi+r11] ; do not change CPU

call cs:KeSetTargetProcessorDpc

mov r11, cs:DPC_cpu_table

xor r8d, r8d

lea rcx, [rdi+r11]

xor edx, edx

call cs:KeInsertQueueDpc

call cs:KeGetCurrentIrql

test al, al

jnz short loc_1648A ; IRQL < 0 means not in worker

lea rcx, [rbp-8] ; shift stack to caller

xor r8d, r8d

12

mov rdx, rsi

call reset_worker ; mov rsp, rcx

; xchg r8, rcx

; jmp rdx

2.2.2 Replay PatchGuard DPC hooking KxDispatchInterrupt

There is an “annoying” case, instead of launching KeBugCheck the PatchGuard seems to
be able to do a direct call at dispatching level. In this case the worker reset is not an
alternative.

In this case the bypass technique relies on a second hook whose target is computed
by the following DPC. It looks for gs:20 7 value on the stack an gets the address above it.

void __stdcall sub_160A0(struct _KDPC *, PVOID, PVOID, PVOID)

sub_160A0 proc near

push rbx

sub rsp, 20h

mov rbx, rdx

call gs_20 ; get mov rax, gs:20

mov r11, rax

lea rax, [rsp+28h]

jmp short loc_160BC

loc_160B8:

add rax, 8 ; inspect the stack

loc_160BC:

cmp [rax], r11

jnz short loc_160B8

mov rax, [rax-8] ; get the return address

xor r8d, r8d

xor edx, edx

movsxd rcx, dword ptr [rax-4]

add rcx, rax

mov cs:qword_787E0, rcx

mov rcx, rbx

add rsp, 20h

pop rbx

jmp cs:KeSetEvent

Being in a DPC, the previous context to inspect is KiDispatchInterrupt and in-
deed we see that gs:20 is saved on the stack by nt!PsChargeProcessCpuCycles called
at nt!KxDispatchInterrupt+0xd6. We can guess that the return address of this call is the
target of the hook. At this location the CPU context is captured just before dispatching
the DPC.

nt!KxDispatchInterrupt:

fffff800‘02a8b8cf 65488b1c2520000000 mov rbx,qword ptr gs:[20h]

fffff800‘02a8b8d8 488b7b08 mov rdi,qword ptr [rbx+8]

fffff800‘02a8b8dc 0fae9c24f0000000 stmxcsr dword ptr [rsp+0F0h]

fffff800‘02a8b8e4 650fae142580010000 ldmxcsr dword ptr gs:[180h]

fffff800‘02a8b8ed f0480fba6b3000 lock bts qword ptr [rbx+30h],0

fffff800‘02a8b8f4 7334 jae nt!KxDispatchInterrupt+0xba

[...]

nt!KxDispatchInterrupt+0xee:

fffff800‘02a8b95e 488bd0 mov rdx,rax

fffff800‘02a8b961 488bcb mov rcx,rbx

fffff800‘02a8b964 e887fc0a00 call nt!PsChargeProcessCpuCycles

7The usage of the structure referenced by gs:20 is not well documented. In ntoskrnl.exe we can observe
that DPC management seems to massively rely on gs:20 for CPU data and DPC queue management.

13

The callback of this hook saves the CPU context in a table with one entry per CPU.
In other terms, this table then contains, for each CPU, the context of the last DPC.

Let’s come back to PatchGuard and KeBugCheck. If the IRQL is at dispatch level,
the callback restores the context saved in the latter table and returns. This sets the CPU
in the exact same context as in the last DPC, that is PatchGuard DPC. At this stage the
PatchGuard will again randomly select a notification method and this will loop until a
notification via a worker is selected where the above callback cancels the notification.

2.3 Hooking payload

2.3.1 Inline hooking

TODO: describe hook inline (631a0h)

2.3.2 Device hooking: IofCallDriver

IofCallDriver is hooked with payload hook IofCallDriver (164E0h). When this routine
is called a list of second level payload is traversed, we name this list HookedDevicesList
(82920h). This list manipulates IO requests including the rootkit internal requests, e.g.
to the rootkit virtual file system described in Section 4.

This second level handler list is manipulated by hookedDevice insertHandler (16090h)
and hookedDevice removeHandler (16110h) which respectively, insert into and remove,
members from the list. The members have the following structure

00000000 hooked_device struc ; (sizeof=0x10)

00000000 next dd ?

00000004 deviceObject dd ? ; DEVICE_OBJECT*

00000008 handler dd ? ; int *(handler)(*_DEVICE_OBJECT, *IRP, int, int;);

0000000C final? dd ? ; stub to execute after the hook payload

00000010 hooked_device ends

The payload of hook IofCallDriver (164E0h) has several different behaviors according
to the device name.

Null, Beep, tcpip and Nsiproxy. The routine rootkit start (1ce40h) is called. It ini-
tiates the rootkit functionalities setting up the messaging system, init commchan
(15a50h), and installs the following hooks system hooking (1e5f0h). Most of them
are related to the hiding of rootkit components. Access control lists seem to be
maintained; authorized process IDs are stored at pid list (8c99ch), a second table
(8c998h) is used in the access control but its usage is not fully understood. Finally,
a third list process name list (8d94c) maintains process names.

ZwQueryKey, ZwEnumerateKey, ZwCreateKey and ZwSaveKey. Hide reg-
istry keys named Ultra3 or LEGACY Ultra3. Note Ultra3 is the rootkit service
name, LEGACY Ultra3 may be related to a former version of the rootkit.

ZwReadFile. Hide the content of \%SystemRoot%\$NtuninstallQ817473$

ZwQuerySystemInformation. Hide rootkit handles.

ZwQueryInformationProcess. Lie on Data Execution Prevention status.

ZwClose. Launch a rootkit module. The actual module is unknown.

ZwTerminateProcess. If the system is shutting down, cleanly shutdown the rootkit,
stopping modules and communication channels.

ObOpenObjectByName. Hide the rootkit’s virtual file systems.

14

Figure 2: Snake communication objects resembling the building blocks.

netbt and afd. Install Transfer Device Interface hooking on the TCP device. This func-
tionality is a communication dispatcher or a command listener.

TODO describe hook sub 174c0 on device Filesystem\sr (driver \Filesystem\Ntfs)

3 Communication framework

The communication framework is an essential part of this rootkit - almost every other
component is relying on it. It was designed to provide robust remote control over infected
machine by providing communication channels between user mode components of the
Snake package and the remote operators, with the use of the VFS as a (permanent and
volatile) storage mechanism.

3.1 Communication objects

The communication framework relies on ‘communication objects‘ created from a table of
‘object descriptor‘ structures, each composed of a name, type, and several handlers (see
Figure 2)

00000000 commobj_descriptor struc ; (sizeof=0x0C)

00000000 name char *

00000004 type dd

00000008 comm_handlers (pointers to functions)

There are 11 communication objects divided into four types (names are used as such
in the rootkit body):

� Type 1: tcp

� Type 2: enc, np, reliable, frag, m2b, m2d

� Type 3: t2m,

15

� Type 4: udp, doms, domc

The number and meaning of object handlers depend on their type, but they usually
implement the following handler table (names of the handlers added by the authors):

00000000 comm_handlers struc ; (sizeof=0x3C)

00000000 length dd ?

00000004 return_zero dd ?

00000008 return dd ?

0000000C constructor dd ?

00000010 destructor dd ?

00000014 cleanup dd ?

00000018 activation dd ? ; init communication

0000001C unknown dd ?

00000020 start dd ? ; start communication

00000024 parse dd ? ; parse commands

00000028 write dd ?

0000002C read dd ?

00000030 print_logs dd ?

00000034 null dd ?

00000038 ntstatus dd ?

0000003C comm_handlers ends

Base objects can be linked together to form a ‘piped structure‘ that we have called
‘communication channel‘ (see Figure 3). Objects are piped by the use of ’.’ (dot), for
example: ‘domc.np‘ or ‘enc.reliable.doms.np‘. A given communication object can only
support objects of certain type to be linked to, for example ’domc’ and ’doms’ objects
can only link to an object of type 2.

The semantics of the different objects are not fully understood at the time of this
writing. Here are the ones which have been fully or partially analyzed:

� tcp - TCP stream communication provider

� np - named pipe provider

� domc - client mode interface over type 2 object (for example named pipe client or
encrypted named pipe client)

� doms - server mode interface over type 2 object (for example named pipe server or
encrypted named pipe server)

� udp - UDP datagram communication provider

� enc - encryption layer over type 2 object

� reliable - implement reliable channel over type 2 object

� frag - fragments reassembling (?) over type 2 object

� m2b - bridge between type 2 and type 1 objects

� m2d - bridge between type 2 and type 4 objects

� t2m - bridge between type 3 and type 2 objects

Each object handles a specific task, for example: the first layer will handle decryption
and scheduling and the second object handles the data layer; reads, writes to named pipes
for example. ’domc’ and ’doms’ are objects that provide respectively a client and a server
interface for bi-directional primitive objects such as ’np’ or ’enc.np’.

16

Figure 3: Snake communication channels are built from communication object used as
building blocks.

3.2 Communication channels

To use the communication objects, communication channel structures are being used.
They are created when the objects are being instantiated, and they contain all the data
necessary to use them such as sub-channels, addresses, UNC names, encryption keys
among others. This structure is of variable size depending on the object type and has a
pointer to a communication object instance structure (comm obj inst t2) at offset 0x0,
and parameters of the channel at higher offsets. All the members except the pointer to
a communication object instance are object dependent. The below describes an example
of how a hardcoded channel ‘domc.np‘, which implements a simple named pipe client, is
designed. The leftmost object for this channel is ‘domc‘, here is the corresponding channel
structure:

struct comm_channel_domc //size=0x30

{

comm_obj_inst *pcomm_obj;

comm_channel_np *psub_channel_s;

comm_channel_np *psub_channel_c;

_DWORD dwordc

_DWORD dword10;

PRKMUTEX prkmutex14;

PRKMUTEX prkmutex18;

char *sub_obj_name;

_DWORD dword20;

_DWORD dword24;

_DWORD dword28;

_DWORD dword2C;

};

17

In this case at offset 0x8 we see the pointer to another comm channel structure8, which
is a sub channel to this comm channel. In case of ’domc.np’ object, the link would lead
to a sub-channel created from the ‘np‘ object (comm channel np structure at offset 0x8):

struct comm_channel_np //size=0x3c

{

comm_obj_inst_t2 *pcomm_obj;

UNICODE_STRING chan_parameters;

UNICODE_STRING unc_name;

int client_np_handle;

int field_18;

int server_np_handle;

PRKMUTEX server_np_handle_mutex;

int status;

int field_28;

int field_2C;

int field_30;

int field_34;

int field_38;

};

This time at offset 0xC we can see the string representing the UNC name of the named
pipe used by this communication channel, for example \Device\NamedPipe\isapi_dg,
and at offset 0x14 a handle to an open named pipe object. Another example: enc object
contains an encryption key at offset 0xc of its communication channel structure (to be
included in the next versions of the document).

comm obj inst structure contains, as a first member, a pointer to the handler table
described above, and a bunch of synchronization primitives, possibly for controlling access
to the instance by multiple threads. This structure represents an instance of a single
communication object of type 2:

struct comm_obj_inst_t2

{

comm_handlers *phandlers;

void *field_4;

int field_8;

int connection_string;

synchro *psynchro;

int unknown;

PRKMUTEX pmutex1;

PRKMUTEX pmutex2;

};

struct synchro

{

_KSEMAPHORE semaphore_1;

_KSEMAPHORE semaphore_2;

_KMUTANT mutex_1;

};

Each object type has its own initialization function that calls a constructor stored in
the third handler table field. For example, type 1 objects use the initialization function
sub 73870. All the created communication channels are inserted into a 64-slot hash table

8Actually at offset 0x4 there is a second communication sub-channel created when the subsequent type
2 object implements a server - accepts connections from multiple sources.

18

Figure 4: The example architecture of a compromised network. One type of covert
channels are being used for LAN trafic between different Snake instances whereas different
ones are used for Internet traffic. Note: the authors based this diagram solely on reverse
engineering and had no insight into a compromised network.

referenced at 0x8d7f8h via the routine sub 6cd00. Each inserted channel is indexed by
a hash computed on the object address and the type of its leftmost object, possibly for
performance reasons. If a collision occurs, conflicting channels are inserted on the list
with the same index.

3.3 Hardcoded channels

Five hardcoded communication channels - named pipe clients, all using object ‘domc.np‘
(string hardcoded at 0x8ad08), are initialized upon rootkit start. The named pipe UNC
names used for the ’np’ sub-objects of this objects are the following:

\Device\NamedPipe\isapi_dg

\Device\NamedPipe\isapi_dg1

\Device\NamedPipe\isapi_dg2

\Device\NamedPipe\isapi_dg3

\Device\NamedPipe\isapi_dg4

The pointers to five instances of ’domc.np’ objects are located in a table at 0x8d724.
These objects are initialized upon driver startup at sub 4ee40 and the I/O communication
loop sub 4fd80 is launched. The loop will periodically try to initiate communication
by calling appropriate object handlers on named pipe objects. This loop seems to be
implementing a tunnel between the named pipe to which a user mode process, that
implements the server, is connected, and a remote end via a low level NDIS traffic that
can be of type ICMP, UDP or TCP, which is implemented in sub 4fea0. These mechanisms
are probably used for local LAN communication between different instances of the rootkit
on the compromised network (see Figure 4)

Two levels of processing are implemented in two separate threads using two linked
lists: one at 0x8d748 and another at 0x8d738. When the NDIS traffic is arrived, provided
the appropriate trigger is satisfied, the tainted traffic will be routed to one of the isapi dg
pipes, where the userland component will be waiting to capture it (TODO: userland
component analysis needed). Other listeners are also initialized: SMTP triggered (routed
to userland via isapi log pipe), and HTTP triggered (routed to userland via isapi http
pipe). See also 3.8 for the description of these triggers.

19

3.4 Channels initialized from the queue

Other communication channels are initialized from the bootstrap queue: several instances
of ’frag.np’ and ’enc.reliable.doms.np’. See the bootstrap queue analysis for more infor-
mation (TODO)

3.5 Low level communications(TODO)

The rootkit implements a low-level communication channel using the ether type 0x7ff.
This ether type is not referenced by RFC. The messages from this channel are handled
differently via the worker sub 4fea0. The buffer queues are skipped in this case.

3.6 Command listener via TDI hooking

The Transfert Device Interface, a.k.a. TDI, is hooked on device \Device\Tcp. The hook-
ing mainly consist in intercepting the traffic tainted by the malware on packet reception.
Thus this code can be considered as a listener for command and control.

For this context, the malware implements inline hooking, inserting its handlers in the
TDI processing of IRP. The major IRPs are handled in hook tcp (52ce0). This payload is
inserted via hookedDevice insertHandler (16090h) presented in Section 2.3.2 on the device
hooking mechanism.

IRP MJ CREATE. Insert the pid to the list of monitored processes and create a packet
queue.

IRP MJ DEVICE CONTROL. Convert into IRP MJ INTERNAL DEVICE CONTROL
and transfer the control over the corresponding branch.

IRP MJ INTERNAL DEVICE CONTROL. Look for the IRP minor function in
the handled list of minor functions hook tcp tdi function (8ac88h). On match the
corresponding handler in hook tcp tdi handler (8ac8ch) is called on the IRP, the
IRP’s stack location and a reference to a handler that will be called at completion.
This list of handlers is described below.

IRP MJ CLOSE. Close the packet queue.

IRP MJ DEFAULT. Nothing particular occured.

All major functions handlers are terminated by hook tcp finalize (16140h), which com-
pletes the requests.

The following list describes the handlers for each minor function, i.e. the TDI events,
processed by the rootkit.

TDI ASSOCIATE ADDRESS (52fa0h). Get the reference associated to the object
in the IRP parameters and populate the reference in an internal list located at
IRP device list (8d788h). In other terms, this handle maintains a list of file refer-
ences corresponding to the different TCP connections.

TDI DISSOCIATE ADDRESS (54050h). Remove the entry from IRP device list
(8d788h), this is clean-up.

20

TDI CONNECT (540b0h). Reassemble the message and set post processing hook tcp process message
(542a0). The post processing shows 5 message types: :RESET, :CANCEL, :TIME-
OUT, :UNREACH, :SUCCESS and an unknown type where a value is printed.
Those messages are logged via the function log message (54600h) and then commit-
ted to a queue located at tcp hook message queue (8d7d0h)

TDI DISCONNECT (546e0h) Push IRP AuxiliaryBuffer in a chained list for post
processing.

TDI SEND (548b0h) If the current process name is a browser, the following event is
created \\BaseNamedObjects\\wininet_activate. This event is then pulsed and
closed. There are no other reference to this event in the malware code. Possibilities
include handling via a module or obsolete code.

TDI RECEIVE (43d50h) Set the tainted traffic interception routine, tainted traffic interception 0
(43de0h), as a final handler called at IRP completion. The authors assume that this
final handler will be called when TDI terminates the handling of the current tcp
packet.

TDI SET EVENT HANDLER (54770h) Look for the event code in the list hook tcp tdi event
(8acc8h) then register the associated handler from hook tcp tdi handler (8accch) in
IO STACK LOCATION.Parameters

The following list describes the TDI event handlers defined by the malware.

ClientEventConnect (55210h) Log the connection via the routines logger 2 (54600h)
and logger commit (56eb0h), retrieve the internal tcp hook stuct corresponding to
the connection and set the transport address in this entry.

ClientEventReceive (554e0h) and ClientEvenChainedReceive (55700h) Call the
traffic interception routine, tainted traffic interception (55a00h), on the received
data.

ClientEventReceiveExpedited (556b0h) and ClientEventChainedReceiveExpedited (55700h)
Call the handler TDI REQUEST KERNEL SET EVENT.EventHandler on the re-
ceived data.

ClientEventChainedReceiveExpedited (55440h) Release the internal tpc hook struct
and call the TDI REQUEST KERNEL SET EVENT.EventHandler on the discon-
nection data.

3.7 Tainted traffic processing

The rootkit is designed to watch for door knocking on a server where Internet-facing
services are being used. The trigger can be delivered hidden in different places of different
network protocols (see 3.8) depending on rootkit’s configuration and victim’s server type
(HTTP - 3 different possibilities, SMTP, TCP, IP, ICMP, DNS, Ethernet), but they
all have one thing in common - the trigger mechanism. There are actually two trigger
mechanisms: the DEADBEAF-style check and the Checksum. The DEADBEAF-style
also contains the checksum calculation as one of its calculation stages.

21

3.7.1 The Checksum

The checksum is being calculated on 8 characters at a given offset and is compared with the
following 2 characters, so the trigger signature is 10 characters long in total. Characters
must be ASCII-printable (>32 and <128). The ord of the 8 characters are summed up
(sum) and are being compared as follows:

signature[9] == sum / 26 + 65

signature[10] == 122 - sum % 26

If the match occurs, the traffic is processed as tainted. Example usage: user part of
an e-mail address, see 3.8: “Mail server”.

3.7.2 DEADBEAF-style

Similar to Checksum but some more processing is involved, as this encoding can also carry
a data message in addition to being only a signature.

The signature contains the 10 bytes of checksum but it is being followed by a base64-
encoded content. First, the Checksum signature is being calculated as described above,
then the base64-decoded content is being base64-decoded. The base64-decoded content
is then being XOR-ed with the raw buffer starting from offset 0x0, so at the first byte of
the signature. First DWORD of such a decrypted buffer is being compared with the value
located at 0x7945c (hardcoded to 0xDEADBEAF but was observed to being changed to
an arbitrary value during the boostrap queue loading). If there is a match, the traffic is
considered tainted. For some covert channels the payload can also carry a data message.
A data portion of the message is located at offset 0xA, directly after the 10-byte signature
(after de-XORing). Example usage of this trigger: the value of an HTTP header, see 3.8:
“Web server or web proxy”.

The checks for tainted traffic are perform on raw TCP stream (sub 49620), HTTP and
SMTP (see also 3.8). From this handling a queue of work item is built via sub 49F80.
TODO: describe tainted traffic interception 0 (43de0h).

3.8 Network footprint

It is likely that a communication mechanism is in fact a sort of proxy to pass traffic from
the external world to named pipes where user land component can be attached. Also,
named pipes can be potentially used to route internal (’lateral’) traffic, e.g. across the
segments on the infected LAN. Most of these channels are created in a way that IDS
signatures would be difficult to construct, for others a prototype is proposed below. Traf-
fic inspection is split into two groups. First group is hooked via TCP traffic signature
matching performed at sub 49580 and obtained by hooking \Device\Tcp.

WARNING: The below signatures are PROTOTYPES - and HAVE NOT BEEN TESTED

1. TCP. Can be installed on a server with any kind of service. Signature matching:
DEADBEAF-style at offset 0x0. Encrypted and encoded signature is 22-byte long
consisting of alphanumeric characters 0x2b-0x7a. Plain snort signature would be
difficult to create. Traffic is passed to ’frag.np’ at isapi http named pipe (frag
object cuts data into smaller pieces before sending it to the named pipe, currently
the reason is unknown).

22

2. Web server - data passed in HTTP GET request URL parameters Can be installed
on a web server. Signature check type: Checksum. It is contained between ”?” and
first ”&” in the URL. It is 10 bytes, 8 arbitrary bytes and 2 bytes of checksum (this
checks are also a part of DEADBEAF-style signature). IDS signature is difficult to
create in this case. Traffic is passed to ’np’ at isapi log named pipe.

3. Web server or web proxy - data passed in HTTP headers. Can be installed on a proxy
server. Signature is a DEADBEAF-style signature contained after ”:” in the first
HTTP-header (just after the request line). Connection is logged to ’np’ at isapi log
named pipe by sending the following string: $IP address + newline (including the
dollar sign, IP address replaced by textual form of IP address of the remote end),
then the rest of the data is getting decoded using the DEADBEAF-style decoding.
The decoded data is being sent to ’frag.np’ or ’enc.frag.np’ at isapi http[n] where
n is encoded in a first DWORD in the decoded buffer (see sub 6c000). Plain snort
signature would be difficult to create. The example traffic with trigger could be the
following:

GET / HTTP/1.1

SomeHeader: YtrEgHjkLoYmFzZTY0ZW5jb2RlZCBzdHJpbmcKYmFz

4. Web server special - data passed in HTTP request local file part of URL. This
is triggered by comparing the local file part of the URL with a string defined at
0x8d680 (initialized by the rootkit but zeroed on my memory dump). Pipe name
where the traffic is passed to, is also computed at runtime (type ’np’). It is possible
that the rootkit with specific configurations writes an arbitrary value here.

5. Mail server. Signature check type: Checksum. The signature is located after RCPT
TO: and ends by @ (so this is the user part of a recipient e-mail address). The
example traffic with trigger could be the following:

HELO whatever.com

250 Hello whatever.com, I am glad to meet you

MAIL FROM: <you.bet@you.are.not>

250 OK

RCPT TO: <trueburger@pwned-org.com>

250 OK

354 End data with <CR><LF>.<CR><LF>

<commands>

Building snort signature would be questionable. The whole traffic is passed to ’np’
at isapi log. First the IP of the remote end is logged as $IP address + newline, then
all lines of the SMTP message body are passed to the pipe. The user land compo-
nent will then receive this transmission and interpret it. There are few commands
encoded by a first character of the sent buffer that are parsed in sub 200081e2 in
the main userland module:

� & - read and send a slot from a local queue

� ! - adjust privileges of a current process

� : - execute a file (file name follows the command)

� - re-parse the local queue

23

� no command - read and send a file (file name is the buffer)

Second group is packed-based matching obtained by registering an NDIS protocol
(mechanism described in previous subsections), checks performed at sub 4F1B0. These
can be processed by ’domc.np’ object and send to isapi dg (depending on the configuration
state it could possibly be different).

1. Raw Ethernet. Traffic is identified by a custom ethertype 0x7FF (whereas the IP
protocol is identified by 0x800)

2. Raw ICMP. DEADBEAF signature is checked at offset 0x8 of ICMP packet.

alert icmp any any -> any any (msg:"Snake ICMP"; \

offset: 0x8 ; pcre:"/^[+-z]{22}/";)

3. Raw TCP. DEADBEAF signature at offset 0x0 of the TCP stream.

4. Raw UDP. Must be port 53, DEADBEAF signature at offset 0x0 of UDP data, so
this can be handy to be installed on a DNS server:

alert udp any any -> any 53 (msg:"Snake UDP 53"; \

pcre:"/^[+-z]{22}/";)

5. RAW IP. DEADBEAF signature at offset 0x0 of IP packet data:

alert ip any any -> any any (msg:"Snake IP"; \

pcre:"/^[+-z]{22}/";)

Interesting typo is contained in one of the SMTP messages. ”Transmittion” is a
mistake that an English native speaker would rather not do.

4 Virtual file systems

The rootkit uses two virtual file systems. One is persistent over reboot and NTFS for-
matted. The other one volatile and FAT formated; its content is never flushed to a real
file system, as a result its content is only accessible on a live infected machine. Both are
encrypted with a CAST like algorithm. The filesystem clusters are decrypted on access
via cache management. As a result the file systems do no appear in clear text even in the
physical memory (see Figure 5).

4.1 Description

The virtual file system is set-up in vfs init (32230h). As initialization, a chained list
vfs IO (8e3a0h) is initialized and associated to a lock vfs IO lock (8e384). This list is
handled via ExfInterlockedInsertTailList and ExfInterlockedRemoveHeadList so that the
code can run at any IRQL. Then an event vfs up (8e3a8h) is create to indicate the status
of the virtual file system service.

Two files system are setup, the first one is persistent over reboot and backed by a file
on the filesystem. The second one is volatile and only resides in memory, it is lost on
rootkit restart or reboot.

24

Figure 5: Snake Virtual File System architecture

4.2 Persistent file system

The persistent file system is setup in two steps: (i) setup a memory section backed by
a file, (ii) provide access to the section via a device hooked with encryption/decryption
primitive on access, (iii) mount the device as an NTFS filesystem. This operation is
detailed below.

4.2.1 Setup a section backed by a file.

The first called routine vfs map raw (339e0h) map in memory the file that will back the
virtual file system. This file is located at the following path.

\\SystemRoot\\$NtuninstallQ817473$\\hotfix.dat

The file is created with the following options meaning that the file is not a direc-
tory, it is not cached, all operation are performed synchronously and no read ahead can
be achieved. In other terms the file is accessed cluster per cluster and all changes are
committed immediately with no caching mechanism. This configuration has limited per-
formance but it is very reliable.

FILE_NO_INTERMEDIATE_BUFFERING

FILE_SYNCHRONOUS_IO_NONALERT

FILE_NON_DIRECTORY_FILE

FILE_RANDOM_ACCESS

The second noticeable parameter is the allocation size of 640000h (104857600d) which
can be considered as an indicator of compromise.

Then this file is mapped to a memory section. The section has read/write permission
and it is SEC COMMIT and SEC NOCACHE, meaning that the section is backed by
the previously created file via the operating system paging mechanism with no caching.
In other terms all modification to the section are directly mirrored to the backing file.
Finally this section is mapped to virtual memory via ZwMapViewOfSection.

25

4.2.2 Bind the section with a device.

A device named \Device\RawDisk1 is created and hooked via the generic device hooking
engine described in Section 2.3.2. The handler is located at 327c0h and we name it
vfs resident handler.

The handler behave differently according to the IRP function.

IRP MJ CREATE, IRP MJ CLOSE: The IO status of the IRP is set to 1. Then
the request is completed.

IRP MJ READ, IRP MJ WRITE: The IRP AuxiliaryBuffer is inserted in the VFS
IO list: vfs IO (8e3a0h).

IRP MJ DEVICE CONTROL: Several behaviors are observed according to the con-
trol code.

IOCTL DISK GET DRIVE GEOMETRY 70000h: The following structure
is filled.

typedef struct _DISK_GEOMETRY {

LARGE_INTEGER Cylinders;

MEDIA_TYPE MediaType;

DWORD TracksPerCylinder;

DWORD SectorsPerTrack;

DWORD BytesPerSector;

} DISK_GEOMETRY;

The number of cylinders is computed dividing the disk size accordingly; with 2
tracks per cylinder, 20h sector per track and 200h byte per cluster. The media
type is FixedMedia (0ch) i.e. a fixed hard disk media.

IOCTL DISK VERIFY 700014h: Set the input extend length as IOStatus.

IOCTL DISK GET PARTITION INFO EX 70048: The following structure
is returned.

typedef struct _PARTITION_INFORMATION_EX {

PARTITION_STYLE PartitionStyle;

LARGE_INTEGER StartingOffset;

LARGE_INTEGER PartitionLength;

ULONG PartitionNumber;

BOOLEAN RewritePartition;

union {

PARTITION_INFORMATION_MBR Mbr;

PARTITION_INFORMATION_GPT Gpt;

};

} PARTITION_INFORMATION_EX;

It indicates that the partition starts at offset 0x200 and the size is stored at
8e388h for the first persistent partition and at 8e390h for the volatile partition.
The partition number is 0, it is not modifiable and the type is MBR. This is
in contrary to the standard partition setup - the partition number should be
1-based and partitions are usually modifiable. The MBR type is 0 meaning
unused, it is not bootable and not recognized. Finally a GPT attribute is
set: GPT ATTRIBUTE PLATFORM REQUIRED. Typically this flag is set
for OEM partitions and it prevents DiskPart.exe to perform any operations.

This structure setting is extremely unusual. The configuration makes the par-
tition invisible for most of applications. On the other hand, this can definitely
be used as an indicator of compromise.

26

IOCTL DISK GET PARTITION INFO 74004h: The partition is kept stealth;
the returned information is coherent with the one returned for control code
70048h. The the output structure is the following.

typedef struct _PARTITION_INFORMATION {

LARGE_INTEGER StartingOffset;

LARGE_INTEGER PartitionLength;

DWORD HiddenSectors;

DWORD PartitionNumber;

BYTE PartitionType;

BOOLEAN BootIndicator;

BOOLEAN RecognizedPartition;

BOOLEAN RewritePartition;

} PARTITION_INFORMATION;

IOCTL DISK GET LENGTH INFO 7405ch: Return the partition length; stored
at 8e388h for the first persistent partition and at 8e390h for the volatile parti-
tion.

IOCTL MOUNTDEV QUERY DEVICE NAME 4D0008h: Return the de-
vice name accordingly: the handler is also used for the volatile VFS \Device\RawDisk1
or \Device\RawDisk2.

IOCTL DISK IS WRITABLE 70024h

IOCTL DISK MEDIA REMOVAL 74804h

IOCTL DISK CHECK VERIFY 74800h

IOCTL DISK SET PARTITION INFO 7c008h

IOCTL STORAGE CHECK VERIFY2 2d0800h

IOCTL STORAGE CHECK VERIFY 2d4800h

IOCTL STORAGE MEDIA REMOVAL 2d4804h

IOCTL MOUNTDEV QUERY DEVICE NAME 4d0008h: The request is
simply completed, keeping the VFS stealth.

Other IRP major functions: The request is simply completed.

4.3 Volatile file system

4.3.1 Bind the the device to the backing section

4.3.2 Initialize FAT file system.

4.4 Encrypted IO.

4.5 Extraction

4.5.1 Live extraction

Attempt to extract the filesystem via a dd.exe utility on the device failed at first time
because raw access to the physical device is blocked after the file system is mounted.
However, after a small modification in the driver file that lets the driver install the en-
crypted volume but prevents mounting it, we could successfully dump the virtual file
system. Modified the execution of the rooktit by pausing it just after the call to setup
virtual storage at 0x15AAB. Then it was possible to dump the encrypted disk by using
the following command:

dd=\\?\Device\RawDisk1 of=disk.img

27

There is also a way to access files on the VFS the same way Snake operators are doing
it; the VFS is used by the user mode components of Snake and by any other tool including
cmd.exe. To access it from user mode it is sufficient to operate a volume name in the
’dot’ namespace, for example:

C:\Documents and Settings\Administrator>dir \\.\Hd1\\

Volume in drive \\.\Hd1 has no label.

Volume Serial Number is 0000-1D1E

Directory of \\.\Hd1

[output redacted]

10/18/2011 06:23 AM 0 dump

05/04/2013 06:10 AM 8,334 klog

10/18/2011 03:50 AM 294,912 pscp.exe

10/21/2011 08:17 AM 1,089,536 queue

10/06/2011 07:33 AM 1,089,536 queue.sav

10/20/2011 05:29 AM 275,968 rar.exe

16 File(s) 3,475,618 bytes

0 Dir(s) 0 bytes free

C:\Documents and Settings\Administrator>

Volume Hd1 is a permanent virtual storage, on the contrary, Hd2 is a temporary
volatile virtual storage so there is no files on there unless during the same session on the
infected machine:

C:\Documents and Settings\Administrator>dir \\.\Hd2\\

Volume in drive \\.\Hd2 has no label.

Volume Serial Number is BA9B-99E8

Directory of \\.\Hd2

File Not Found

4.5.2 Offline extraction

The input and output to the VFS are handled by the routine located at 0x33500 which
encrypt and decrypt data on the fly per chunks of 0x200 bytes. This routine uses
MmMapLockedPagesSpecifyCache to serve the decrypted data. The hook for encrypted
IO is installed via hooking IofCallDriver API (see 2.3.2). Each time there is an operation
to be performed on the encrypted disk, the hook will divert it to the decryption routine
first. The operation is performed at low level and is completely transparent to other
kernel components and the user processes.

Cryptography The cryptographic algorithm used to access the VFS is a cipher derived
from CAST composed of a key scheduler located at 0x31300 and a cipher primitive located
at 0x37E0. The 128bit cryptographic key used to access the VFS is located at 0x8BB40.

0008bb40: A1 D2 10 B7 6D 5E DA 0F A1 65 AF EF 79 C3 66 FA

RawDisk1 The VFS RawDisk1 mapped from hotfix.dat is believed to be mounted as
\\Hd1. When decrypted, hotfix.dat appears as an NTFS volume containing binaries,
configuration files and encrypted files but also queue and queue.sav.

28

Figure 6: Snake messaging framework

RawDisk2 The VFS RawDisk2 is mounted as \\Hd2. The header is filled with the
following buffer which is a file system header of a FAT partition.

00000000 eb 00 00 00 00 00 00 00 00 00 00 00 02 03 02 00 |................|

00000010 02 00 02 f8 00 00 0a 01 20 00 02 00 01 00 00 00 |........|

00000020 ff 1f c7 00 80 29 e8 99 9b ba 4e 4f 20 4e 41 4d |.....)....NO NAM|

00000030 45 20 20 20 46 41 54 31 36 20 20 20 00 00 00 00 |E FAT16|

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

5 Bootstrap: the queue file

After the initialization the rootkit opens and reads its configuration resources. This is
contained in the ‘queue‘ file located on Hd1 (see the fragment of the directory listing
command at 4.5.1). This queue file is divided into slots called messages (see Figure
6). A message consists of 64-byte header (TODO - describe the header) and the body.
Most of the messages are encrypted and must be decrypted by the routine located at
sub 20410. Each message is identified by the message ID. Some message IDs are precisely
defined, others are defined by range which describes their meaning (for example, msg
0x229 contains an encryption key to decrypt subsequent messages, messages 0x65-0x6F
contain communication objects to be created). Queue file is also being accessed by the
userland modules (TODO). Messages can be of type integer or string. There are many
message ID ranges that are being read from the bootstrap queue by Snake kernel, so far
the following have been identified: in the kernel part:

� msg 0x229 (not encrypted): contains a key to decrypt other messages. Read in at
sub 29570

� msg 0x8: contains a 32-bit value to replace the DEADBEAF trigger cryptochecksum
replacement. It is deliver as a DWORD in textual form (0x41414141) and is then
converted to integer. Read in at sub 49960.

� msg 0x9: another integer is read similarly that affects processing of the HTTP
trigger

29

� msg 0x2F3 - 0x2FB: integers, probably some network parameters are read in and
stored in a table at 0x8d5c8 by sub 37c60

� msg 0x65 - 0x6F: contains the communication objects to be instantiated with the
name of the pipe. it will create a communication object ’enc.frag.np’ with the named
pipe isapi http1. In an example queue the following objects are created:

– ’enc.frag.np’ bound to isapi http1 pipe

– ’frag.enc.reliable.doms.np’ bound to isapi dg1 pipe

� msg 0x70 - 0x79: contain the parameters for the instantiated communication objects,
e.g. 0x70 contains parameters for object created from 0x65, 0x71 for 0x66 etc. Each
of the base object accepts some configiration parameters, for example np objects
accepts ‘allow=*everyone‘, enc objects accepts ‘key=some key‘

� msg 0x1: unknown integer (0x332)

� msg 0x28B - 0x2BD: configure which processes are to be monitored in order to inject
userland DLLs when they appear. Usual targets are: services.exe, explorer.exe,
browser processes

� variable ID - injection payloads. DLL userland modules which will be injected to
defined earlier processes. Injection is operated from sub 19fc0 (snake module start)

6 Userland components

Snake is a modular framework and it is difficult to analyze it without its userland coun-
terparts that get injected from the queue during rootkit initialization. The authors have
captured three different user mode components, each of them compiled for the two dif-
ferent architectures: 32 and 64-bit. It is possible that more components exist in the
wild.

All user mode components are extracted from the queue file (see 5) and injected
into the services.exe process by the kernel PE injector. The main malicious thread is
created by the kernel code and its priority is being bumped to 31 which corresponds
to the highest of ‘real-time‘ priorities in Windows. It means that this thread is not
being pre-empted if it continues to stay in the running state. It also makes the thread
unstoppable by the debugger. The kernel is waiting for this thread with the timeout set
to 15 seconds, probably to prevent the freeze of the system in case of the thread entering
a long loop. The thread must spawn other threads before this timeout, otherwise the
kenrel will terminate it. 32-bit versions of the modules will be described but the same
functionality is implemented in their 64-bit counterparts.

6.1 inj snake Win32.dll - main module

This is the main userland module of Snake rootkit. This module is very large (884
functions) and performs many tasks. Currently identified tasks are the following:

� Opening the queue file and reading/writing messages destined for user space

� Connecting and operating the other endpoints of named pipe communication chan-
nels. It includes decrypting/encrypting and interpreting the traffic that is sent by/to
the kernel components (see 3.8)

30

� Providing callback functions for all other injected modules (code_result_tbl(),
snake_modules_command() etc.)

TODO

6.2 inj services Win32.dll

TODO

6.3 rkctl Win32.dll - rootkit control module

This module seems to provide functions to control the rootkit behavior. TODO

A List of int C3h handlers (TODO)

B Supporting functions

B.1 PE image mapping (TODO)

B.2 Relocation algorithm

The PE relocation algoritm implemented by the rootkit follows the lines of the specifi-
cation. It uses the fix-up table pointed by the BaseReloc.VirtualAddress field in the PE
optional header. This table is usually located in the .reloc section. It is broken into blocks
which define the fixups, each block begins with a 32bit address pointing to the location
where the fix-ups will be applied followed by the size of the block expressed as a 32bit
unsigned integer. This 8 byte header is followed by the fix-ups expressed as a bit field
where the 4 high bits express the relocation type and the 12 low bit express the relocation
offset. Programmatically the relocation table is a table of structures defined as follows.

00000000 RELOCATION_BLOCK struc

00000000 fixup_target dd

00000004 block_size dd

00000008 fixup[N] dd ; where N = (block_size - 8)/4

???????? RELOCATION_BLOCK ends

The algorithm embedded in the rootkit processes the following fixup types.

IMAGE REL BASED ABSOLUTE value 0 Do nothing, this is used to pad the
relocation table

locZ_5B397: ; IMAGE_REL_BASED_ABSOLUTE

jmp loc_5B42B

IMAGE REL BASED HIGH value 1 Add the 16 bits of the fix-up offset to the high
word of the relocation target as a 32-bit address.

loc_5B39C: ; IMAGE_REL_BASED_HIGH

mov eax, [ebp+imagebase]

add eax, [ebp+reloc_target_offset]

mov [ebp+reloc_target_address], eax

mov ecx, [ebp+reloc_target_address]

movzx edx, word ptr [ecx]

mov eax, [ebp+PE_imagebase]

shr eax, 10h

movzx ecx, ax

31

add edx, ecx

mov eax, [ebp+reloc_target_address]

mov [eax], dx

jmp short loc_5B42B

IMAGE REL BASED LOW value 2 Add the 16 bits of the fix-up offset to the low
word of the relocation target as a 32-bit address.

loc_5B3BE: ; IMAGE_REL_BASED_LOW

mov ecx, [ebp+imagebase]

add ecx, [ebp+reloc_target_offset]

mov [ebp+reloc_target_address], ecx

mov edx, [ebp+reloc_target_address]

movzx eax, word ptr [edx]

mov ecx, [ebp+PE_imagebase]

and ecx, 0FFFFh

movzx edx, cx

add eax, edx

mov ecx, [ebp+reloc_target_address]

mov [ecx], ax

jmp short loc_5B42B

IMAGE REL BASED HIGHLOW value 3 Add the the fix-up offset to the low
word of the relocation target as a 32-bit address.

loc_5B3E3: ; IMAGE_REL_BASED_HIGHLOW

mov edx, [ebp+imagebase]

add edx, [ebp+reloc_target_offset]

mov [ebp+reloc_target_address32], edx

mov eax, [ebp+reloc_target_address32]

mov ecx, [eax]

add ecx, [ebp+PE_imagebase]

mov edx, [ebp+reloc_target_address32]

mov [edx], ecx

jmp short loc_5B42B

IMAGE REL BASED DIR64 value 0Ah Add the the fix-up offset to the low word
of the relocation target as a 64-bit address.

loc_5B402: ; IMAGE_REL_BASED_DIR64

mov eax, [ebp+imagebase]

add eax, [ebp+reloc_target_offset]

mov [ebp+reloc_address64], eax

mov ecx, [ebp+PE_imagebase]

xor edx, edx

mov eax, [ebp+reloc_address64]

add ecx, [eax]

mov eax, [eax+4]

adc eax, edx

mov edx, [ebp+reloc_address64]

mov [edx], ecx

mov [edx+4], eax

jmp short loc_5B42B

The following relocation types are not implemented.

IMAGE REL BASED HIGHADJ value 4 Apply the relocation to relocation with
a 32bit offset. It occupies two more bytes in the fix-up table.

32

IMAGE REL BASED MIPS JMPADDR value 5 Apply the relocation to a MIPS9

jump.

IMAGE REL BASED SECTION value6 Reserved.

IMAGE REL BASED REL32 value 7 Reserved.

IMAGE REL BASED MIPS JMPADDR16 value 9 Apply the relocation to a MIPS16
jump.

IMAGE REL BASED HIGH3ADJ value 0Bh This is a 48bit relocation, it occu-
pies 4 more bytes in the relocation table.

B.3 Get module reference

The function lookup module (438F0h) gets the image references of the module name spec-
ified as the first argument. Upon success it returns the image base address and the image
size of the located module. The values are then respectively stored in main struct.ntoskrnl baseaddress
(8CB80h) and main struct.ntoskrnl imagesize (8CB84h).

The target module is searched in the module list obtained via a system call Zw-
QuerySystemInformation on SystemModuleInformation (16h). This technique is docu-
mented at the following address http://alter.org.ua/docs/nt kernel/procaddr. The selec-
tion routine implements four cases according to the target module name.

ntoskrnl.exe The first module in the list is selected.

.text:00034997 cmp [ebp+idx], 0

.text:0003499B jnz short loc_349B3

.text:0003499D mov ecx, [ebp+module_name_len]

.text:000349A0 push ecx

.text:000349A1 push offset aNtoskrnl_exe ; ‘‘ntoskrnl.exe’’

.text:000349A6 mov edx, [ebp+module_name]

.text:000349A9 push edx

.text:000349AA call stricmp ; case insensitive

.text:000349AF test eax, eax

HAL.dll The second module in the list is selected.

.text:000349B3 cmp [ebp+idx], 1

.text:000349B7 jnz short loc_349CF

.text:000349B9 mov eax, [ebp+module_name_len]

.text:000349BC push eax

.text:000349BD push offset aHal_dll ; ‘‘HAL.dll’’

.text:000349C2 mov ecx, [ebp+module_name]

.text:000349C5 push ecx

.text:000349C6 call stricmp ; case insensitive

.text:000349CB test eax, eax

ntdll.dll The first module with a base address in userland is selected, with a baseaddress
lower or equal than 0x80000000.

.text:00034A02 mov ecx, [ebp+module_name_len]

.text:00034A05 push ecx

.text:00034A06 push offset aNtdll_dll ; ‘‘ntdll.dll’’

.text:00034A0B mov edx, [ebp+module_name]

.text:00034A0E push edx

9Specific machine code: Microprocessor without Interlocked Pipeline Stages.

33

.text:00034A0F call stricmp ; case insensitive

.text:00034A14 test eax, eax

.text:00034A16 jnz short loc_34A33

.text:00034A18 mov eax, [ebp+idx]

.text:00034A1B imul eax, size SYSTEM_MODULE

.text:00034A21 mov ecx, [ebp+module_table]

.text:00034A24 cmp [ecx+eax+SYSTEM_MODULE.ImageBaseAddress], 80000000h

.text:00034A2C jbe short loc_34A33

Other name The first module matching the name is selected.

.text:000349CF mov edx, [ebp+module_name_len]

.text:000349D2 push edx

.text:000349D3 mov eax, [ebp+module_name]

.text:000349D6 push eax

.text:000349D7 mov ecx, [ebp+idx]

.text:000349DA imul ecx, size SYSTEM_MODULE

.text:000349E0 add ecx, [ebp+module_table]

.text:000349E3 mov edx, [ebp+idx]

.text:000349E6 imul edx, size SYSTEM_MODULE

.text:000349EC mov eax, [ebp+module_table]

.text:000349EF movzx edx, [eax+edx+SYSTEM_MODULE.NameOffset]

.text:000349F4 lea eax, [ecx+edx+SYSTEM_MODULE.Name]

.text:000349F8 push eax

.text:000349F9 call stricmp ; case insensitive

.text:000349FE test eax, eax

B.4 Get procedure address (TODO)

34

