Stealth Modification of
Programmable Logic Controllers

/O by Pin Control Attack

Who we are

Ali Abbasi, visiting researcher at chair of system security of Ruhr
University Bochum and PhD student at Distributed and Embedded
Systems Security Group, University of Twente, The Netherlands.

(9% @bl4ckic3)

Majid Hashemi, R&D researcher (9 @m4;ji_d).

Agenda

Background on Process Control

Background on existing attacks and defenses for embedded systems
Applicable Defenses for PLCs

Background on Pin Control

The Problem with Pin Control

Rootkit variant

Non-rootkit variant

Demo

Discussions

What this talk is about?

The talk is trying to uncover existing design flaw in PLCs.
The attack can be used in future by attackers.

We are not unveiling fully functional malware for PLCs.
No exploitation techniques, no Oday leak

We are not going to mention any vendor name.

Industrial Control System

Information
echnology (IT)

Internet

Industrial Control System hacking

Internet

Process control 101

Process control

Set point

Running upstairs to turn on your
furnace every time it gets cold
gets tiring after a while so you
automate it with a thermostat

Control loop

process

Adjust themselves
to influence
process behavior

Computes control
commands for
actuators

Measure process
state

Control equipment

In large —scale operations control logic gets more complex
than a thermostat

One would need something bigger than a thermostat to
handle it

Most of the time this is a programmable logic controller
(PLC)

10

What is a PLC?

An Embedded System with RTOS running logic.

Devices being
controlled

PC is connected
for programming

Input
switches

11

Control logic

It is programmed graphically most of the time

Defines what should/should not happen
Under which conditions
At what time
Yes or No proposition

-
dwOut 22 - feaesd

|Parameter [Type [curent..[Pr..| vaue|Defaut..|unt |Description |
¥ GPIO4 Ent not us t used f
@ GPIO17
& GPIO1 T not used
@ GPIOZ: Output
@ GPIOZ: T not used

[if input 1] AND [input 2 or input 11] If tank pressure in PLC 1 > 1800
-> [do something in output 6] reduce inflow in PLC 3

How PLC Works

Sensors

SetPoint

70

Source B Deadband
5

HiTemp

SetPoint

70

Source B Deadband
5

Dest LoTemp
0

ceB HiTemp

0

Bvc =\
=)
B

y—

——

Actuators

Runtime Physical 110

Variable Table
(VT)

Inputs from
Read/Write "
o Read/Write 1/0

&

Logic
Program

Outputs to I/0
Outputs

Control algorithm

Used to compute output based on inputs received from control logic

PID: proportional, integral, derivative — most
widely used control algorithm on the planet

Pl controllers are most often used

Without Derivative || With Derivative

Jacques Smuts ,,Process Control for Practitioners”

Existing Attacks and Defenses for Embedded Systems
Applicable to the PLCs

15

Current attacks against embedded
systems

Authentication bypass
Attacker find a backdoor password in the PLC.

Firmware modification attacks

Attacker upload new firmware to the PLC

Configuration manipulation attacks
Attacker modify the logic

Control Flow attacks
Attacker find a buffer overflow or RCE in the PLC

Hooking functions for ICS malwares

16

Current defenses for embedded
systems

Attestation

memory attestation

Firmware integrity verification

Verify the integrity of firmware before its being uploaded

Hook detection

Code hooking detection

Detect code hooking

Data hooking detection
Detect data hooking

17

Requirement for Applicable Defenses for PLCs

Designed for embedded devices running modern OS.
No hardware modifications.

Limited CPU overhead.

No virtualization.

18

System-level protection for PLCs

Trivial Defenses:
Logic Checksum
Firmware integrity verification

Non-trivial software-based HIDS applicable to PLCs

Doppelganger (Symbiote Defense): an implementation for
software symbiotes for embedded devices

Autoscopy JR: A host based intrusion detection which is
designed to detect kernel rootkits for embedded control
systems

19

How Doppelganger Works

Scan the firmware of the device for live code regions and insert
symbiotes randomly.

1 2

can the Firmware for Live Code Regions

Randomly Set Symbiote to Live code area

Symbiote . Symbiote 0

Symbiote Manager

Firmware

) Symbiote2
€mory | (Checksum of

Breakpoint 1 Breakpoint 2

20

How Autoscopy Jr works

Tries to Detects function hooking by learning

Verifies the destination function address and returns
with the values and addresses in TLL (Trusted
Location List)

Function2(a,b,c)

Trusted Location
Function 1 Function 2 Sl
Learn Function Pointer
Addresses and their return
addresses

21

Debug Registers

Designed for debugging purpose.

Function hooking intercept the
function call and manipulate the
function argument.

We use debug registers in ARM e e, 1o
processors to intercept memory Wistitying the debugaer, Jerrroerreeenererooeec

L-th& _tealtrﬂess
dCCESS (No function interception, no function argument
manipulation)

ction

rs, there ﬂc e been a ,l‘ rﬁra ’f :Lﬁn QLC; aFd m:tn ds of

ctly tampering
interrupt handler,
of them were modifying the un ying operating system in & very visible
manner, making them easily detected.

In the article I will present a technig
stealthness in kernel rootkits, b
ing mechanism. Although it v

Pin Control

Background on Pin Control

Pin Control subsystem
Pin multiplexing (type)
Pin configuration (in/out)

Connec tion to
\ i Peripheral:

SoC Side View

multiplexing

Mult pIe
Pin

Pin Configuration e

Input Pin

& GPIO4 =numeration not u<ed

readable writeable # cPlo17 GO rabued
& GPIO1S = of B not used
& GPIOZ2 nera of Qutput
® GPIOZ23 “NUMe of B not used

@ GPIO24
R e favi

Output Pin

readable writeable

flE

GIINFIEIIIIATIIIN'E\'EIIYWIIERE

25

How PLC controls I/O

Runtime Mapped physical
Addresses
Variable Table Page Table
(V1) : Mapped l/O at Thread Local Storage (TLS)

Re(:;_i Ir;z;lts Inputs from D> » and | | OxB6FCDO1A 0x20200002
n

i o .
Reac\ill_\rerte Register Name| Address Value

0xB6FCDO034 0x2020001C

Program

Output to IO Input/Output Mode
Update 0xB6FCDO1A 000 000.,..000 000

Outputs
(Pin 22)

Address
0xB6FCDO1A
0xB6FCD034

Introducing Pin Control Attack: A Memory Illusion

Request for mapping the physical I/O Memory

Map (I/O Memory, +16bytes)

map via MMU

PLC Runtime

Physical I/O Memory

_) Virtual I/0 Memory (mapped)
Pin 24 = nput (it ==0) R i |
> |
Pin 22 == Qutput (bit == 1) ____ N

» State Register

-—p Write register

bk

BLINK
ENABLE
I /

Write 0/1 every 5 sec

»

= Write register

Read Pin 24

Read register

<
™

27

Introducing Pin Control Attack: A Memory Illusion

Request for mapping the physical I/O Memory

Map (I/O Memory, +16bytes)

map via MMU

PLC Runtime

Physical I/O Memory

Virtual I/0 Memory (mapped)
. » State Register Y for bit 22
—> State Register | ol ol
bl

BLINK

Write 0/1 every 5 sec

»

= Write register

Read register

A

28

Think of copying files to USB drive

Similar mapping between physical and virtual addresses

If USB drive is removed during copy operation, OS reports
a warning back

The disk was not ejected properly. If
possible, always eject a disk before
unplugging it or turning it off.

To eject a disk, select it in the Finder and choose File
> Eject. The next time you connect the disk, Mac OS
X will attempt to repair any damage to the
information on the disk.

29

Lets look at it.

Demo 1

Nobody thought about the same issue for PLCs

Shouldn’t the PLC runtime fail or get terminated because of
|/O failure?

Nope: | DONT WANT.TO LIVE

4
=

(anE
ON THIS PEANEITANYMORE

PLC design was always about paramount reliability of real-time execution,
HIGH up-time and long-term useful life in harsh environmental conditions

Malicious manipulation of PLC were not part of design considerations :-) ”

Security concerns regarding pin control

No interrupt for pin configuration

How the OS knows about the modification of pin configuration?
What if somebody modifies configuration of a pin at runtime?
By switching input pin into output pin, it is possible to write
arbitrary value into its physical address

No Interrupt for pin multiplexing

How OS knows about modification of pin multiplexing?
What if somebody multiplex a pin at runtime?

By multiplexing pin it is possible to prevent runtime from
writing value into output pin

32

Problem statement

* What if we create an attack using pin control that:

Do not do function hooking
Do not modify executable contents of the PLC runtime.
Do not change the logic file

* Obviously we consider other defenses available (e.g. logic checksum
is also there)

33

Pin Control Attack

Pin Control Attack

* Pin Control Attack:
- manipulate the |/O configuration (Pin Configuration Attack)
- manipulate the I/O multiplexing (Pin Multiplexing Attack)

* PLC OS will never knows aboutit. =

35

—

Two options to achieve the same :
> .
First version: rootkit

Root privilege
Knowledge of SoC registers
Knowledge of mapping between 1/0O pins and the logic

@ Second version: C-code (shell code)

Equal privilege as PLC runtime
Knowledge of mapping between 1/O pins and the logic

No function hooking

No modification of PLC runtime
executable content

No change to logic file

36

Manipulate Read

1. Put I/O Address
into Debug
register

read(l/O, Pin)

2. Intercept Read
Operation from 1/O

3. Set Pin to
Output Mode

4. Write Desired
Value to Output

read() continue....

How Pin Configuration Attack Works?

Manipulate Write

1. Put I/O Address
into Debug
register

write(l/O, Pin)

2. Intercept Write
Operation to 1/0

3. Set Pin to Input
(write-ignore)

write() continue...

Pin Control Attack actions C]

PLC runtime actions [:]

37

Simple Logic

input : State of In.24

output: State of Out.22

Main Logic;

Lets test it with a simple Function Block while True do
Language Logic. read input;

while input True do

switch_state(output, five seconds);
Bl Ee B //states are High or Low.
end
if input False then

[Parameter [Typs | Cument..| Pr.| Value| Defaut..|unk | Descripton | | hold the state of the output;
numeration ¢ nokt use nok "J confi af 104

% GPIO4 not used

@ GPIO17 2y N not used | 0 else

¥ GPIO13 n N not used ! not used ’ go tO ﬁrSt Whlle,
» GPIO22 2y ation Output not used confi on

@ GPIO23 dy not used 7 t used nfi 23 end

@ GPIO24 2

@ DIN7G

38

Simple Logic 2

Second Logic for a real PLC

W svs
[RN
myo
M

Application (I

oE ©OE OoE om oo
oE Om Oom om oo

z
=
3

a1

Onll OB ON OB
: Oomll om om om

Mapping ~ Channel efault Value e Prepared Value Unit Description

"# |application.pL
v
"
v

39

TP, Lf:ul(oc.padsmex
et € EEEEEEE0 |

() (YYYYVUYNWENEN G

VEVIOVORINY E ONM IR IS s A K

40

EEERES
SEEENEER

: +24VDC 1.9A

DRP-045D-24F
O/P

Lets look at it.

Demo 2

Lets look at it.

Demo 3

A PLC runtime Dynamic and Static Analysis

/O Mapping

Look for Base Addresses of I/0
| Il i 1

Library function ~ Data B Regular function | Unexplored [Instruction External symbol

s HXB UL, JFBSD s X D182CBBC s Ox575B9332 - Ox836A03F9
DA, OxD1B89713, OxXD9BAA7/04, OxXB6CO6F738, OX3FASS5BSC
[b6ed47754] open("/etc/35.dat", O_RDONLY) = 8 <B.,0019795 Ll g Ry L il L WA LD Ll Ly LR
[b6df334c] close(B) = 0 <0.001878> 8x223D: : 0x1] mml:l‘i f:n"x: !:1::;;--::/”,-:':1:'.‘; ‘/-: H; 1“ : ; Fi :: l} 191 : ‘,.I.:
[bbed7f54] openl fo", 0_RDONLY) = 8 <0.001354> OXEF878EA7, Bx172C1C83, Ox4OES54DO4, Bx588CDBC8, 0x1B19ACHI
(bhdf334c] Bx7ED50852, BXEBC950C8, Ox9C67C354, Bx3DASF8A7, Ox421FBB11
Sl deu/nes”, 0_SDIR) = B <0,00118> | 06D ex2C816017, GFBIENSTS, @x6WBGG3, ExFISCO122, exias1hes2
map2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, 8, 0x202¢ 8x97F2C7D9, Bx4868685D, BxB2U6O2AE, Bx75828FCA, Bx73HCTE1G
se(B) = 0 <0.001246> 0xD39ESC : 0x4BF 3B9 0: : 8x952C30A : 0x2F9255 : 0xD2FBF6E7
[b6f2cT7ed] open P) 0xD2AD2CO7, Ox47B449B9, Ox46CF816A, BxXSB1A9BOD, Bx9B617886
[b6f2cTed] open("/de OxE7864462, OxASDAO33E, Ox4B3ASC38, OxAS7A4FDO, Bx235575B9
1rdA {0 BeDBAIERAT Buhp \ L2 AB10 OxB2E7AEC8, OxXCC77016F, 0xD6 9C, Ox8BF267AC, BxB91822D4
i ni 'y n ! DCLCI i i 1DONOLC i Dni Il n

|/O Attack: Rootkit

Rootkit needs root user to install its code as a Loadable Kernel
Module (LKM).

vmalloc() allocates our LKM. It evades Doppelganger.
Do not do any kind of function hooking, evades Autoscopy Jr.

Can change the logic regardless of logic operation.

Other Logic Code
attacks

Pin
Control
attack

45

/0 response time fluctuation in rootkit variant

—
o
o
c
Q
O
o
2
E
7]

With Rootkit
No Rootkit

46

CPU Overhead

©

3
£

o
8
pu
a
(&)

Write Manipulation: ~ 5%

Read Manipulation: ~ 23%

Time (seconds)

Rootkit manipulates Write operations with 'O Attack
— & — Rootkit manipulates Read operations with O Attack |

47

Second Variant of the Attack — No Rootkit !

No need to have rootkit!
We can do the same with the PLC runtime privilege.

Overhead below 1%.

We can either remap the I/O or use already mapped I/O address.

As shellcode

48

Second variant

The Malicious Code

Starting Time Calculation
Loop

Read the 1/O
Input
every 4 Write
millitsecond Manipulate

Read

Read the I/O Manipulate
Output every 4
millisecond

Reconfigure the
IO Pins

/dev/imem

Exported
Kernel Object
File System

device driver

PLC
Runtime

Physical I/0O Pin

49

Second Variant

Manipulate Read

1. Find the
Refrence Starting
Time

3. Set Pinto
Output Mode
(write-enable)

4. Write Desired
Value to Output
Pin

Manipulate Write

1. Find the
Refrence Starting
Time

3. Set Pin to Input
(write-ignore)

write() to 1/0

3. Set Pinto
Output
(write-enable)

_ Write desired
read(l/O, Pin) value

Pin Control Attack actions C]

PLC runtime actions C]

What about Analog Control?

Analog signals are basically aggregation of digital signals.

Two ways to do it:

1. If part of or entire analog memory can get multiplexed to digital pins
attacker can multiplex the pin and write digital bits and basically control the

values in the analog memory

2. Using the technique which we can PC+1, we tell the interrupt handler to
return the control to the next instruction within the PLC runtime, basically
avoiding write operation occur

51

Analog I/O Manipulation

Analog Read (SP1)

0000O0O0CO0ODO0QOOD

o
o
o
o
o
o
o
o
o

(12C)

Analog Write

52

Lets look at it.

Demo

Analog

Other Future Possibilities!

Attacking pull-up and pull-down resistors in I/O interfaces
What if we disable them?

Remotely manipulate the 1/O via a powerful electromagnetic field!

Pull Dn

Control Regs

54

Never trust your inputs!

Discussions

For now attacker can:
Simply change the logic
Modify PLC Runtime executable

Fixing these attacks are trivial:
Proper Authentication
Proper Logic Checksum
PLC Runtime integrity verification

Next Step for attackers:

Achieve its goal without actually modifying the Logic or Runtime or
hooking functions

56

Race to the Bottom

As soon as security is
introduced at some layer of
computer or network
architecture abstraction, the
attackers are going one layer
down.

In the hacking community it
is called Race-to-the-Bottom

57

Conclusions

Need to focus on system level security of control devices In future
more sophisticated techniques come that evade defenses.

Pin Control attack is an example of such attacks.

Pin Control Attack:

lack of interrupt for 1/O configuration registers
Significant consequences on protected PLCs and other control devices such
as |EDs.

Solution:
It is hard to handle /O interrupts with existing real-time constraints.
Monitoring I/O Configuration Pins for anomalies.
User/Kernel space separation for I/O memory.

58

Questions?

Looking for more...

Attend our talk at DigitalBond S4x17, Miami, USA

Everything that has a beginning has an end.

The Matrix Revolutions.

Contact:

59

