

The first article that mentioned ñMoonlight Mazeò appeared on 25 July 1999, The Sunday Times, London

The origins of digital espionage remain hidden in the dark. In most cases, codenames and

fragments of stories are all that remains of the óprehistoricô actors that pioneered the now-

ubiquitous practice of computer network exploitation. The origins of early operations, tools, and

tradecraft are largely unknown: official documents will remain classified for years and decades

to come; memories of investigators are eroding as time passes; and often precious forensic

evidence is discarded, destroyed, or simply lost as storage devices age. Even óMoonlight Maze,ô

perhaps the oldest publicly acknowledged state actor, has evaded open forensic analysis.

Intrusions began as early as 1996. The early targets: a vast number of US military and

government networks, including Wright Patterson and Kelly Air Force Bases, the Army

Research Lab, the Naval Sea Systems Command in Indian Head, Maryland, NASA, and the

Department of Energy labs. By mid-1998 the FBI and Department of Defense investigators had

forensic evidence pointing to Russian ISPs. After a Congressional hearing in late February

1999, news of the FBIôs vast investigation leaked to the public.1 However, little detail ever

surfaced regarding the actual means and procedures of this threat actor. Eventually the code

name was replaced (with the attackersô improved intrusion set dubbed Storm Cloudô, and later

óMakers Markô) and the original óMMô faded into obscurity without proper technical forensic

artefacts to tie these cyberespionage pioneers to the modern menagerie of APT actors we are

now all too familiar with.

Two files exfiltrated from the US Navy via the London relay site in 1998, showing satellite tracks used for oceanic

research into sea surface dynamic height.

While investigating for Rise of the Machines, Thomas Rid came across a curious claim from

former investigators in three different countries: that the Moonlight Maze threat actor would

eventually evolve into the modern day Turla.

Turla, a Russian-speaking threat actor, is one of the true greats of the cyberespionage scene.

Also known as Snake, Uroburos, Venomous Bear, and Krypton, the APT group is conventionally

believed to have been active since 2007, employing diverse infection vectors, an ever-changing

toolkit, interesting exfiltration tactics, and even deception techniques. The idea that the Turla

threat actor may be related to this historic attack piqued our interest, as substantiating this claim

would effectively set it as a historical counterpart to the Equation Group in extraordinary

longevity.

1 ñTarget Pentagon: Cyber-Attack Mounted Through Russia,ò ABC Nightly News, 4 March 1999.

ñPentagon probes "serious" computer hacking,ò AFP, 4 March 1999, 01:11 GMT. See also Jim
Miklaszewski, ñPentagon and hackers in ócyberwar,ôò ZDNet, 5 March 1999.

http://amzn.to/1qHGmds
https://securelist.com/analysis/publications/65545/the-epic-turla-operation/
https://securelist.com/blog/research/77429/kopiluwak-a-new-javascript-payload-from-turla/
https://securelist.com/blog/research/77429/kopiluwak-a-new-javascript-payload-from-turla/
https://securelist.com/blog/research/72081/satellite-turla-apt-command-and-control-in-the-sky/
https://securelist.com/files/2016/10/Bartholomew-GuerreroSaade-VB2016.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://web.archive.org/web/20170401225346/http:/www.zdnet.com/article/pentagon-and-hackers-in-cyberwar-5000101740/

The Beginning of a Parallel Investigation

The MMïTurla claim was not implausible. But we had nothing to substantiate a strictly technical

connection. So we decided to set out on a parallel investigation to prove this curious

progression. Even well-sourced claims would be challenged and it would be far more satisfying

to a technical audience to provide technical artefacts that would set Turla into the league of

prehistoric titans as the counterpart to the Equation Group.

As if this tall order were not difficult enough on its own, our initial assessment was grim. Firstly,

we had no samples from the MM intrusion set to compare with. As researchers, we often

bemoan visibility issues in investigating modern attacks where all the blinky boxes and security

software in the world is already generating mountains of forensic evidence. How much greater

would the visibility barrier be for a twenty year old investigation?

Secondly, were we to find forensic artefacts, what exactly would we be comparing those MM

samples with? Thereôs a rich history of Turla samples spanning around ten years worth of

Windows-based malware operations, from userland malware to rootkits to plugins and on. So

might it be possible to simply hunt backwards for the oldest Windows sample? Our attempt

would not be the first time that archeological research would challenge a conception of Turlaôs

longevity.

The First Historical Correction

At the 2015 VirusBulletin conference, a different historic gap was bridged by our own Kurt

Baumgartner who revealed a solid connection between Turla and the old-school Agent.BTZ.

Though the connection between the two would not be regarded with as much skepticism, Kurt

provided yet another solid link by finding samples of Agent.BTZ that connect to Turla hijacked

satellite infrastructure. This adds to research by Paul Rascagneres tying the two. The Turlaï

BTZ link is solid, but it only gets us as far back as 2008. Unpublished third-party research

indicates that the internal development of this codebase can be traced back to a start date in

2006, when Turlaôs modern Windows toolkits began. The resulting decade-long gap seemed to

frustrate any attempt to forensically recreate the more ambitious connection to Moonlight Maze.

Date Context Code Name

1996, Oct Intrusions detected Unnamed

1998, July FBI investigation starts MOONLIGHT MAZE

1999, March ABC reveals investigation

1999, April FBI Task Force trip to Moscow

1999, July Sunday Times reveals code name

1999/2000 STORM CLOUD

https://www.virusbulletin.com/uploads/pdf/conference_slides/2015/Baumgartner-VB2015.pdf
http://blog.threatexpert.com/2008/11/agentbtz-threat-that-hit-pentagon.html
https://blog.gdatasoftware.com/2014/11/23937-the-uroburos-case-new-sophisticated-rat-identified

2001 WSJ reveals new code name

2003 MAKERS MARK

2008, Oct DoD detects intrusion Agent.BTZ

2008 Removal campaign revealed BUCKSHOT YANKEE

2014, Dec Kaspersky report published PENQUIN TURLA

2015, Jan Ƨ-!+%23 -!2+ƨ ÒÅÖÅÁÌÅÄ ÉÎ
Snowden files 2

2016, May Swiss GovCERT (MELANI)
published RUAG report

PENQUIN TURLA confirmed
in - the - wild

A Dead End?

With epic odds against us, we hit the drawing board once again with little to go on. One key

finding from the interviews for Rise kept us going: óMMô was in fact a Solaris/*nix-based attack

and not actually Windows-based, as outsiders mightôve assumed. This small detail sent us in an

entirely different direction. Rather than futilely attempting to unearth the MM intrusion set by

hunting for older Turla Windows samples, we were reminded of some very rare samples

discovered by GReAT in late 2014, called óPenquin Turlaô. This was a strange Linux backdoor

by the Turla actor originally discovered on a multiscanner, with no evidence of deployment in-

the-wild at the time, but including the telltale use of hijacked satellites for exfiltration Turla loves

so much.

Revisiting these samples with fresh eyes, we noticed interesting signs pointing in the direction of

an exceptionally old codebase developed and maintained from 1999 to 2004. Moreover, despite

the blogs assertion that Penquin was based on cd00r, a fresh investigation would point instead

to an older backdoor called LOKI2.

The LOKI2 lead revived our hope of finding a connecting thread between the ancient MM and

modern Turla. Our working hypothesis is that, out of necessity, Turla dusted-off and reused its

old *nix code for a present-day target. But without MM samples and fragments we would be

unable to test this hypothesis. Moreover, Thomas dug up documents that revealed that the FBI,

following standard evidentiary procedures, had in due course destroyed the remaining evidence

from this investigation. Other sources confirmed that all forensic evidence may have been lost to

history.

2 ñPay attention to that man behind the curtain: discovering aliens on CNE infrastructure,ò CSEC Counter-

CNE, Target Analytics thread SIGDEV Conference, NSA, June 2010, p. 17, in ñNSA Preps America for
Future Battle,ò Der Spiegel, 17 January 2015.

https://securelist.com/blog/research/67962/the-penquin-turla-2/
https://securelist.com/blog/research/72081/satellite-turla-apt-command-and-control-in-the-sky/

FBI destruction notice of stored evidence including ñcomputer disksò on Moonlight Maze, Feb 2008.

Source: FBI FOIA release, 1300712-000, 21 November 2014.

Our last hope was that someone with a passion for history had held onto artefacts that were

now collecting dust in some cupboard somewhere ...

The Cupboard Samples

The still functioning óHRTestô server was used as a key relay site by

the Moonlight Maze operators for around six months in late 1998/1999

In computer network intrusions, proxying is one of the ways in which operators muddy the

attribution waters. By relaying their connections through a server or a hacked endpoint, the final

destination will only be aware of the latest hop. The Moonlight Maze operators were early

adopters of this technique. They popped a series of servers like universities, libraries, and

vulnerable institutions in different countries that would go on to be used as staging servers to

pull archives full of tools and exploits and to relay through on their way to victims in order to

throw early investigators off the scent of the attackers. In the end, it didnôt turn out exactly how

the stealthy attackers intended.

One of the institutions targeted by the MM operators was a company in the U.K. Upon discovery

of its use as a relay site, the FBI and Scotland Yard contacted their system administrator and

set out to turn this server against the attackers. HRTest was set up to collect logs, save all

archives, capture packets, and particularly to monitor a user named óit.ô This move proved a

coup for the investigators, who received a six month snapshot of MM operations through that

relay site from 1998ï1999. Nearly a decade later, we would too.

Thomas Rid, David Hedges, Daniel Moore, and Juan Andres Guerrero-Saade at Kingôs College London, March 2016

In one meeting, the now retired system administrator pulled a bulky vintage HP laptop from his

bag. As he walked us through the old logs and exfiled documents, it became clear that it may be

possible after all to shed light into this dimly lit ancient maze. The HRTest intercepts contained

45 binaries, including 28 SunOS SPARC binaries and 17 IRIX MIPS binaries, as well as 9

scripts. An extensive analysis of these is provided in a separate technical report (Appendix B).

He would also provide extensive logs, generated by both EtherPeek as well as the attackers

themselves (Appendix A below). Fascinated by this treasure trove, we would spend months

reconstructing deep-diving into these materials.

Entering the Moonlit Maze

A 27 May 1997 US Navy Incident Report mentioning the /cgi-bin/phf exploit and the link to citiline.ru.

Source: US Navy FOIA Release, SEROOLJF/12U6048, 19 December 2012.

It all began with a single borrowed exploit. Documents FOIA requested by Karl Grindal describe

multiple intrusion attempts on military systems by abusing a vulnerability in a specific common

gateway interface (CGI) binary. The binary, named <phf>, was commonly bundled with the

HTTP daemon at the time and thereby often present on outfacing web servers. Some time in

early 1996, an exploit against <phf> started making the rounds. The vulnerability could be

exploited with a web request crafted in the following way:

http://<server>/cgi-bin/phf?Qalias=%ff/bin/cat%20/etc/passwd

The server was thereby primed to spit out the contents of the password fileðthus allowing the

attackers to simply telnet or ftp into the server and login under the guise of a legitimate user. In

some cases these attempts failed, simply based on the absence of the vulnerable <phf> binary.

In others, they clearly succeeded and paved the way for an onslaught of attacks that would

prove hard to root out even years later.

A Toolkit Forged through Trial-and-Error

This opportunistic trial-and-error approach would come to describe much of the early days of

Moonlight Maze, as evident in the toolkit leveraged on different victim boxes. Upon connecting

to a victim server, the attackers would retrieve a TAR archive containing a series of exploits

http://karlgrindal.com/
http://insecure.org/sploits/phf-cgi.html

compiled into binaries, tools (both custom and open-source), and configuration or automation

scripts. Early tool archives contained a wide spread of exploits and tools, almost all drawn from

publicly available source code. These were essentially hit or miss attempts, testing different

exploits with no certainty that the victims would be vulnerable to these. Similarly, some of the

tools worked while others were broken and in need of retooling or replacing.

Coming from a time before packers and fancy obfuscation, the binaries are largely

straightforward tools that showcase the attackers' pragmatic approach and a purity of

functionality seldom encountered in modern malware. The binaries often borrow code and

exploits from forums and security mailing lists.

An Improved ósolsnifferô

The evolution of sniffers within MM illustrates how the operators grew from nation-state script

kiddies to developers in their own right. After a broken sniffer failed (<ora>), sniffers were built

using tcpdump, libpcap, and a 1994 rootkit called ósolsnifferô (<tdn>). The operators eventually

combined both styles into the more successful <td_tr>. These sniffers collected data

promiscuously on victim networks and generated logs of connections on ports like telnet, pop3,

ftp, rlogin. This sniffer would continue to be used for the remainder of our visibility and yield

some of the most interesting forensic artefacts3.

LOKI2 ð The Evolving Norse God of Covert Channel Comms

The development tree of LOKI2 in the Moonlight Maze samples from 1997ï1999.

Similarly, the attackers found another favorite in LOKI2. The small tool was an ingenious covert

channel backdoor written by Alhambra and daemon9 and published in Phrack from 1996-1997.

3 See Appendix A for an analysis of the log files.

The purpose of LOKI2 is to tunnel traffic through unusual protocols like ICMP. The attackers

began by leveraging a straightforward compilation of LOKI2 named <lc> and, not knowing how

to better interact with the daemon, wrote their own client, which they internally named óspy_cli.cô.

LOKI2 became a favorite and received the most sustained development effort based on our

visibility into the campaign.

LOKI2 would be further developed. The <lc> and <cli> combination described above would

evolve to <lo>, one stripped of obvious strings and error messages to throw off investigators

that may check strings in search of infections. The next iteration reflects their preference for this

successful covert channel tool as they start to integrate custom functionality. The most

important development is a put/get backdoor that would allow the intruders to bypass the need

for FTP by being able to move files as needed. This suggests further limitations in our visibility:

we have not been able to observe such covert traffic. The final evolution within the span of

HRTestôs visibility is named <lopg>. It too includes the custom put/get backdoor along with

<slok>, a strange utility that invokes a hidden instance of pine (an old school mail client) for

some sort of command-line usage we have yet to observe. Additionally, the developers baked in

a utmp log cleaner as an added measure of stealth to remove any logs of their intrusions. This

trend of a notable preference for LOKI2 and its further development would play a key role in our

parallel investigation.

Parallel Development

Depending on the victim system, the attackers would retrieve archives full of tools designed for

SunOS SPARC or IRIX MIPS. The latter would usually include an 'i' in the name, both for the

archive and the binaries inside. The IRIX toolkit consists of largely the same tools as the

SPARC toolkit, though a greater number of samples and binary development suggests that, at

least for the period of our visibility, the operators were more prone to interact with SunOS

systems. Development between both toolkits was bi-directional. If something worked on one

platform, it would likely be ported or cross-compiled for the other architecture. Interestingly, one

tool (a log cleaner) appears to have been ported to IRIX by the operators themselves, including

the wiping of IRIX log files not present on SunOS systems.

A Note on the Exploits

The exploits were leveraged in a trial-and-error approach almost entirely for the sole purpose of

privilege escalation. With little previous reconnaissance on new victims, the attackers would

often retrieve an archive with half a dozen exploits onto a new victim system and proceed to

execute different ones. If none worked, they might attempt a different archive or move onto

another system on the same network and resume their attempts there. This isn't the hyper-

cognizant modern attacker that studies a victim and prepares specifically tailored tools for an

attack but given MM's proliferation and overall success, we should perhaps reserve judgment

for lack of surgical precision.

Given the intensity of the modern debate on responsible disclosure of vulnerabilities, itôs worth

noting that the Moonlight Maze campaign achieved much of its success exfiltrating sensitive

information by using many exploits, but none of these were developed by the attackers

themselves. All the exploits that we have identified came from public resources. In most cases,

the exploits were developed as proofs-of-concept by benign system administrators hoping to

inform others of the vulnerabilities present in their own systems. Two important contextual

observations must be made:

First, software manufacturers and maintainers in the mid-90s were not too troubled by

security patch cycles. According to the discoverers, some of the vulnerabilities publicized

were going unpatched for periods of six months to a year after having been reported to

companies like Silicon Graphics (developers of IRIX).

Secondly, system administrators at the time were more likely to be capable of rolling

some of their own patches or workarounds and could thereby benefit from awareness of

these vulnerabilities.

The true menace came from the disclosure of weaponized proof-of-concept code, rather than

descriptions of the vulnerabilities themselves. This allowed the Moonlight Maze operators to

copy-paste their way into the history books.

Pseudo-Automation

In our experience, the most advanced modern cyberespionage operations tend to be

characterized by extremely sophisticated development efforts whose byproducts are generally

deployed by lesser skilled operators. This becomes clear in incident response engagements

that reveal the operatorsô keyboard fumbling, misspellings, or retries.

That is not the case with the MM operators. In fact, the situation is inverted. The MM operators

appear to be skilled *NIX users, who are crafty and pragmatic, and in no way intimidated by on-

keyboard operations, all the while using a lesser-grade largely open-source toolkit. This

operator intensive modus operandi is documented in the logs and codified into the binaries and

scripts that allow them to pseudo-automate a stunningly vast network of victims without reliance

on modern command-and-control infrastructure nor sophisticated malware capable of

performing more complex operations on its own and serving up results without interaction.

Sample sniffer configuration script from the 1996ï1999 Moonlight Maze samples

The operators developed different types of scripts that they relied on to set the tasking for

different malware components. In turn, malware meant to stay resident on the victim system

would check specifically named files in the ó/var/tmp/ô directory for instructions or configuration.

In later phases of their campaign, this allowed the operators to simply connect to a system or

network and change these tasking files as necessary in order to instruct all infected systems to

conduct certain operations.

Infostealer (left) and IP listing and hostname resolution (right) scripts from 1996ï1999 samples

Similarly, information stealing, lateral movement and exfiltration relied on well-crafted scripts

meant to cut salient information from logs and other byproducts of the malware implanted on

victim machines. The operators would always process sniffer logs for lists of domains that they

would then run through a custom tool to get the hostnames associated with these. These lists

would then be used to spread onto other victim networks associated with the already infected

machines, likely leveraging passwords they had also exfiltrated at this time.

Moonlight Maze was artisanal digital espionage: an operator- and labor- intensive campaign

with little tolerance for error and only rudimentary automation.

Meet Max, Iron, and Rinat

Compilation paths with usernames for Max, Iron, and Rinat from three different Moonlight Maze binaries.

Despite their early adoption of operational security in the form of their extensive use of relays,

the Moonlight Maze operators made many mistakes resulting in small attributory indicators and

the creation of extensive forensic artifacts. These include indications of their lackluster English

proficiency, the consistent use of a Russian word, and binary compilation information that

served as the ELF equivalent of PDB paths. The latter revealed some of the integrants of the

Moonlight Maze crew as Max, Iron, and Rinat4. Though itôs possible these were compiled on

victim machines, the three users are seen in conjunction with paths like ó/myprg/ô, ó/mytdn/ô

(<tdn> is the MM name for a set of sniffers), and ó/exploits/ô. Also noteworthy is the internal

convention for one of Ironôs early programs: <cli>, a client meant to function alongside an early

4 Rinat is a common Tatar given name meaning ñLabourò or ñRevolutionò.

version of the LOKI2 backdoor, was internally named óspy_cli.cô. That small fact may suggest an

early awareness that the intention of the operation was not óhacking for funô as was popular in

the 90s but rather espionage proper.

A transliteration of the Russian ñʚʥʫʢò.

Two binaries (<de> and the later improved <deg>) consistently use the transliterated Russian

word óvnukô, meaning ñgrandchildò or ñgrandsonò, to print out the PID of a twice-forked process.

One of many examples of charmingly broken English in the Moonlight Maze binaries.

On the other hand, the developersô evidenced English proficiency was nothing to marvel at.

Binaries included strings with misspellings like ñHiding complit...nò, ñreceving message", and

"Error in parametrsò. They also included awkwardly phrased strings like ñERROR: Can not open

socket....", "open file for read", "Connect successful....", and "ERROR: Not connect...".

All of the tool configuration and execution, lateral movement, and exfiltration visible to us

occurred while the operators were connected to the systems through the HRTest relay site. Due

to our visibility into backend connections, we were able to profile timestamps of these

connections to serve the equivalent of a histogram as might normally be done with compilation

timestamps from PE files. The histogram places hours of operation as apparently conforming to

an 8AM workday at UTC+35.

Penquin Turla Revisited

A prescient statement by Kurt Baumgartner in the original discovery blogpost for Penquin Turla

In December 2014, Kaspersky announced the discovery of a Linux-based Turla toolkit named

Penquin Turla. The blogpost was based on one sample and another broken file and described a

quirky statically-linked backdoor that applies a BPF-filter to look for certain magic packets. It

also misidentifies the source code used as cd00r, an open-source backdoor by fx. The actual

source code was in fact LOKI2. At the time, there was no evidence of use in-the-wild but the

backdoor was lumped into the larger cluster of Turla activity by its use of a hardcoded Turla

domain (news-bbc.podzone[.]org). Since then, we would go on to discover five additional

functional samples, including variants, and a very rare trojanized version. Among these, two

5 See Appendix A for more details.

https://securelist.com/blog/research/67962/the-penquin-turla-2/
http://www.phenoelit.org/stuff/cd00r.c

samples would point to an additional known Turla IP (82.146.175[.]43) from a Lebanese satellite

connection provider.

Dating the Penquin Codebase

Most of the Penquin Turla samples found were not stripped of debugging symbols at compile

time, aiding in the process of reverse engineering these by maintaining some original names

and compilation information. These samples are statically-compiled 32-bit Linux ELF binaries

linked with C libraries for GNU/Linux kernel versions 2.2.0 and 2.2.5. The former kernel was on

January 20th, 1999, while version 2.2.5 was released later that year. A very rare Penquin Turla

sample trojanized into a Linux network time protocol daemon was linked for kernel version

2.2.18, released on December 11th, 2000, and stripped of debugging symbols.

The code statically linked into these samples includes versions of open-source libraries like

libpcap and OpenSSL from 1999-2004:

While these headers are not equivalent to the compilation timestamps available in the PE file

format, they provide start date delimiters for active development in the codebase.

Similarly, a private report detailing an incident with another Penquin Turla variant not in our

collection, details a version statically linked with both libpcap version 0.7 (2001-2002) and

SSLeay version 0.9.0b (Jan 1999). These findings lead the researchers to independently

conclude that the Penquin Turla codebase was old and likely developed in 2002.

The RUAG Report ï Penquin In-the-Wild

MELANI Swiss GovCERTôs insightful analysis of an active Penquin Turla infection at RUAG

https://www.melani.admin.ch/melani/en/home/dokumentation/reports/technical-reports/technical-report_apt_case_ruag.html

mailto:penquin@kaspersky.com

