
PENQUIN’S MOONLIT MAZE
The Dawn of Nation-State Digital Espionage

Juan Andres Guerrero-Saade, Costin Raiu (GReAT)

Daniel Moore, Thomas Rid (King’s College London)

The origins of digital espionage remain hidden in the dark. In most cases, codenames and

fragments of stories are all that remains of the ‘prehistoric’ actors that pioneered the now-

ubiquitous practice of computer network exploitation. The origins of early operations, tools, and

tradecraft are largely unknown: official documents will remain classified for years and decades

to come; memories of investigators are eroding as time passes; and often precious forensic

evidence is discarded, destroyed, or simply lost as storage devices age. Even ‘Moonlight

Maze,’ perhaps the oldest publicly acknowledged state actor, has evaded open forensic

analysis.

Intrusions began as early as 1996. The early targets: a vast number of US military and

government networks, including Wright Patterson and Kelly Air Force Bases, the Army

Research Lab, the Naval Sea Systems Command in Indian Head, Maryland, NASA, and the

Department of Energy labs. By mid-1998 the FBI and Department of Defense investigators had

forensic evidence pointing to Russian ISPs. After a Congressional hearing in late February

1999, news of the FBI’s vast investigation leaked to the public.1 However, little detail ever

surfaced regarding the actual means and procedures of this threat actor. Eventually the code

name was replaced (with the attackers’ improved intrusion set dubbed Storm Cloud’, and later

‘Makers Mark’) and the original ‘MM’ faded into obscurity without proper technical forensic

artefacts to tie these cyberespionage pioneers to the modern menagerie of APT actors we are

now all too familiar with.

Two files exfiltrated from the US Navy via the London relay site in 1998, showing satellite tracks used for oceanic

research into sea surface dynamic height.

While investigating for Rise of the Machines, Thomas Rid came across a curious claim from

former investigators in three different countries: that the Moonlight Maze threat actor would

eventually evolve into the modern day Turla.

Turla, a Russian-speaking threat actor, is one of the true greats of the cyberespionage scene.

Also known as Snake, Uroburos, Venomous Bear, and Krypton, the APT group is conventionally

believed to have been active since 2007, employing diverse infection vectors, an ever-changing

toolkit, interesting exfiltration tactics, and even deception techniques. The idea that the Turla

threat actor may be related to this historic attack piqued our interest, as substantiating this claim

would effectively set it as a historical counterpart to the Equation Group in extraordinary

longevity.

1 “Target Pentagon: Cyber-Attack Mounted Through Russia,” ABC Nightly News, 4 March 1999.

“Pentagon probes "serious" computer hacking,” AFP, 4 March 1999, 01:11 GMT. See also Jim
Miklaszewski, “Pentagon and hackers in ‘cyberwar,’” ZDNet, 5 March 1999.

http://amzn.to/1qHGmds
https://securelist.com/analysis/publications/65545/the-epic-turla-operation/
https://securelist.com/blog/research/77429/kopiluwak-a-new-javascript-payload-from-turla/
https://securelist.com/blog/research/77429/kopiluwak-a-new-javascript-payload-from-turla/
https://securelist.com/blog/research/72081/satellite-turla-apt-command-and-control-in-the-sky/
https://securelist.com/files/2016/10/Bartholomew-GuerreroSaade-VB2016.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://web.archive.org/web/20170401225346/http:/www.zdnet.com/article/pentagon-and-hackers-in-cyberwar-5000101740/

The Beginning of a Parallel Investigation

The MM–Turla claim was not implausible. But we had nothing to substantiate a strictly technical

connection. So we decided to set out on a parallel investigation to prove this curious

progression. Even well-sourced claims would be challenged and it would be far more satisfying

to a technical audience to provide technical artefacts that would set Turla into the league of

prehistoric titans as the counterpart to the Equation Group.

As if this tall order were not difficult enough on its own, our initial assessment was grim. Firstly,

we had no samples from the MM intrusion set to compare with. As researchers, we often

bemoan visibility issues in investigating modern attacks where all the blinky boxes and security

software in the world is already generating mountains of forensic evidence. How much greater

would the visibility barrier be for a twenty year old investigation?

Secondly, were we to find forensic artefacts, what exactly would we be comparing those MM

samples with? There’s a rich history of Turla samples spanning around ten years worth of

Windows-based malware operations, from userland malware to rootkits to plugins and on. So

might it be possible to simply hunt backwards for the oldest Windows sample? Our attempt

would not be the first time that archeological research would challenge a conception of Turla’s

longevity.

The First Historical Correction

At the 2015 VirusBulletin conference, a different historic gap was bridged by our own Kurt

Baumgartner who revealed a solid connection between Turla and the old-school Agent.BTZ.

Though the connection between the two would not be regarded with as much skepticism, Kurt

provided yet another solid link by finding samples of Agent.BTZ that connect to Turla hijacked

satellite infrastructure. This adds to research by Paul Rascagneres tying the two. The Turla–

BTZ link is solid, but it only gets us as far back as 2008. Unpublished third-party research

indicates that the internal development of this codebase can be traced back to a start date in

2006, when Turla’s modern Windows toolkits began. The resulting decade-long gap seemed to

frustrate any attempt to forensically recreate the more ambitious connection to Moonlight Maze.

Date Context Code Name

1996, Oct Intrusions detected Unnamed

1998, July FBI investigation starts MOONLIGHT MAZE

1999, March ABC reveals investigation

1999, April FBI Task Force trip to Moscow

1999, July Sunday Times reveals code name

1999/2000 STORM CLOUD

https://www.virusbulletin.com/uploads/pdf/conference_slides/2015/Baumgartner-VB2015.pdf
http://blog.threatexpert.com/2008/11/agentbtz-threat-that-hit-pentagon.html
https://blog.gdatasoftware.com/2014/11/23937-the-uroburos-case-new-sophisticated-rat-identified

2001 WSJ reveals new code name

2003 MAKERS MARK

2008, Oct DoD detects intrusion Agent.BTZ

2008 Removal campaign revealed BUCKSHOT YANKEE

2014, Dec Kaspersky report published PENQUIN TURLA

2015, Jan “MAKERS MARK” revealed in
Snowden files2

2016, May Swiss GovCERT (MELANI)
published RUAG report

PENQUIN TURLA confirmed
in-the-wild

A Dead End?

With epic odds against us, we hit the drawing board once again with little to go on. One key

finding from the interviews for Rise kept us going: ‘MM’ was in fact a Solaris/*nix-based attack

and not actually Windows-based, as outsiders might’ve assumed. This small detail sent us in an

entirely different direction. Rather than futilely attempting to unearth the MM intrusion set by

hunting for older Turla Windows samples, we were reminded of some very rare samples

discovered by GReAT in late 2014, called ‘Penquin Turla’. This was a strange Linux backdoor

by the Turla actor originally discovered on a multiscanner, with no evidence of deployment in-

the-wild at the time, but including the telltale use of hijacked satellites for exfiltration Turla loves

so much.

Revisiting these samples with fresh eyes, we noticed interesting signs pointing in the direction of

an exceptionally old codebase developed and maintained from 1999 to 2004. Moreover, despite

the blogs assertion that Penquin was based on cd00r, a fresh investigation would point instead

to an older backdoor called LOKI2.

The LOKI2 lead revived our hope of finding a connecting thread between the ancient MM and

modern Turla. Our working hypothesis is that, out of necessity, Turla dusted-off and reused its

old *nix code for a present-day target. But without MM samples and fragments we would be

unable to test this hypothesis. Moreover, Thomas dug up documents that revealed that the FBI,

following standard evidentiary procedures, had in due course destroyed the remaining evidence

from this investigation. Other sources confirmed that all forensic evidence may have been lost to

history.

2 “Pay attention to that man behind the curtain: discovering aliens on CNE infrastructure,” CSEC Counter-

CNE, Target Analytics thread SIGDEV Conference, NSA, June 2010, p. 17, in “NSA Preps America for
Future Battle,” Der Spiegel, 17 January 2015.

https://securelist.com/blog/research/67962/the-penquin-turla-2/
https://securelist.com/blog/research/72081/satellite-turla-apt-command-and-control-in-the-sky/

FBI destruction notice of stored evidence including “computer disks” on Moonlight Maze, Feb 2008.

Source: FBI FOIA release, 1300712-000, 21 November 2014.

Our last hope was that someone with a passion for history had held onto artefacts that were

now collecting dust in some cupboard somewhere ...

The Cupboard Samples

The still functioning ‘HRTest’ server was used as a key relay site by

the Moonlight Maze operators for around six months in late 1998/1999

In computer network intrusions, proxying is one of the ways in which operators muddy the

attribution waters. By relaying their connections through a server or a hacked endpoint, the final

destination will only be aware of the latest hop. The Moonlight Maze operators were early

adopters of this technique. They popped a series of servers like universities, libraries, and

vulnerable institutions in different countries that would go on to be used as staging servers to

pull archives full of tools and exploits and to relay through on their way to victims in order to

throw early investigators off the scent of the attackers. In the end, it didn’t turn out exactly how

the stealthy attackers intended.

One of the institutions targeted by the MM operators was a company in the U.K. Upon discovery

of its use as a relay site, the FBI and Scotland Yard contacted their system administrator and

set out to turn this server against the attackers. HRTest was set up to collect logs, save all

archives, capture packets, and particularly to monitor a user named ‘it.’ This move proved a

coup for the investigators, who received a six month snapshot of MM operations through that

relay site from 1998–1999. Nearly a decade later, we would too.

Thomas Rid, David Hedges, Daniel Moore, and Juan Andres Guerrero-Saade at King’s College London, March 2016

In one meeting, the now retired system administrator pulled a bulky vintage HP laptop from his

bag. As he walked us through the old logs and exfiled documents, it became clear that it may be

possible after all to shed light into this dimly lit ancient maze. The HRTest intercepts contained

45 binaries, including 28 SunOS SPARC binaries and 17 IRIX MIPS binaries, as well as 9

scripts. An extensive analysis of these is provided in a separate technical report (Appendix B).

He would also provide extensive logs, generated by both EtherPeek as well as the attackers

themselves (Appendix A below). Fascinated by this treasure trove, we would spend months

reconstructing deep-diving into these materials.

Entering the Moonlit Maze

A 27 May 1997 US Navy Incident Report mentioning the /cgi-bin/phf exploit and the link to citiline.ru.

Source: US Navy FOIA Release, SEROOLJF/12U6048, 19 December 2012.

It all began with a single borrowed exploit. Documents FOIA requested by Karl Grindal describe

multiple intrusion attempts on military systems by abusing a vulnerability in a specific common

gateway interface (CGI) binary. The binary, named <phf>, was commonly bundled with the

HTTP daemon at the time and thereby often present on outfacing web servers. Some time in

early 1996, an exploit against <phf> started making the rounds. The vulnerability could be

exploited with a web request crafted in the following way:

http://<server>/cgi-bin/phf?Qalias=%ff/bin/cat%20/etc/passwd

The server was thereby primed to spit out the contents of the password file—thus allowing the

attackers to simply telnet or ftp into the server and login under the guise of a legitimate user. In

some cases these attempts failed, simply based on the absence of the vulnerable <phf> binary.

In others, they clearly succeeded and paved the way for an onslaught of attacks that would

prove hard to root out even years later.

A Toolkit Forged through Trial-and-Error

This opportunistic trial-and-error approach would come to describe much of the early days of

Moonlight Maze, as evident in the toolkit leveraged on different victim boxes. Upon connecting

to a victim server, the attackers would retrieve a TAR archive containing a series of exploits

http://karlgrindal.com/
http://insecure.org/sploits/phf-cgi.html

compiled into binaries, tools (both custom and open-source), and configuration or automation

scripts. Early tool archives contained a wide spread of exploits and tools, almost all drawn from

publicly available source code. These were essentially hit or miss attempts, testing different

exploits with no certainty that the victims would be vulnerable to these. Similarly, some of the

tools worked while others were broken and in need of retooling or replacing.

Coming from a time before packers and fancy obfuscation, the binaries are largely

straightforward tools that showcase the attackers' pragmatic approach and a purity of

functionality seldom encountered in modern malware. The binaries often borrow code and

exploits from forums and security mailing lists.

An Improved ‘solsniffer’

The evolution of sniffers within MM illustrates how the operators grew from nation-state script

kiddies to developers in their own right. After a broken sniffer failed (<ora>), sniffers were built

using tcpdump, libpcap, and a 1994 rootkit called ‘solsniffer’ (<tdn>). The operators eventually

combined both styles into the more successful <td_tr>. These sniffers collected data

promiscuously on victim networks and generated logs of connections on ports like telnet, pop3,

ftp, rlogin. This sniffer would continue to be used for the remainder of our visibility and yield

some of the most interesting forensic artefacts3.

LOKI2 — The Evolving Norse God of Covert Channel Comms

The development tree of LOKI2 in the Moonlight Maze samples from 1997–1999.

Similarly, the attackers found another favorite in LOKI2. The small tool was an ingenious covert

channel backdoor written by Alhambra and daemon9 and published in Phrack from 1996-1997.

3 See Appendix A for an analysis of the log files.

The purpose of LOKI2 is to tunnel traffic through unusual protocols like ICMP. The attackers

began by leveraging a straightforward compilation of LOKI2 named <lc> and, not knowing how

to better interact with the daemon, wrote their own client, which they internally named ‘spy_cli.c’.

LOKI2 became a favorite and received the most sustained development effort based on our

visibility into the campaign.

LOKI2 would be further developed. The <lc> and <cli> combination described above would

evolve to <lo>, one stripped of obvious strings and error messages to throw off investigators

that may check strings in search of infections. The next iteration reflects their preference for this

successful covert channel tool as they start to integrate custom functionality. The most

important development is a put/get backdoor that would allow the intruders to bypass the need

for FTP by being able to move files as needed. This suggests further limitations in our visibility:

we have not been able to observe such covert traffic. The final evolution within the span of

HRTest’s visibility is named <lopg>. It too includes the custom put/get backdoor along with

<slok>, a strange utility that invokes a hidden instance of pine (an old school mail client) for

some sort of command-line usage we have yet to observe. Additionally, the developers baked in

a utmp log cleaner as an added measure of stealth to remove any logs of their intrusions. This

trend of a notable preference for LOKI2 and its further development would play a key role in our

parallel investigation.

Parallel Development

Depending on the victim system, the attackers would retrieve archives full of tools designed for

SunOS SPARC or IRIX MIPS. The latter would usually include an 'i' in the name, both for the

archive and the binaries inside. The IRIX toolkit consists of largely the same tools as the

SPARC toolkit, though a greater number of samples and binary development suggests that, at

least for the period of our visibility, the operators were more prone to interact with SunOS

systems. Development between both toolkits was bi-directional. If something worked on one

platform, it would likely be ported or cross-compiled for the other architecture. Interestingly, one

tool (a log cleaner) appears to have been ported to IRIX by the operators themselves, including

the wiping of IRIX log files not present on SunOS systems.

A Note on the Exploits

The exploits were leveraged in a trial-and-error approach almost entirely for the sole purpose of

privilege escalation. With little previous reconnaissance on new victims, the attackers would

often retrieve an archive with half a dozen exploits onto a new victim system and proceed to

execute different ones. If none worked, they might attempt a different archive or move onto

another system on the same network and resume their attempts there. This isn't the hyper-

cognizant modern attacker that studies a victim and prepares specifically tailored tools for an

attack but given MM's proliferation and overall success, we should perhaps reserve judgment

for lack of surgical precision.

Given the intensity of the modern debate on responsible disclosure of vulnerabilities, it’s worth

noting that the Moonlight Maze campaign achieved much of its success exfiltrating sensitive

information by using many exploits, but none of these were developed by the attackers

themselves. All the exploits that we have identified came from public resources. In most cases,

the exploits were developed as proofs-of-concept by benign system administrators hoping to

inform others of the vulnerabilities present in their own systems. Two important contextual

observations must be made:

First, software manufacturers and maintainers in the mid-90s were not too troubled by

security patch cycles. According to the discoverers, some of the vulnerabilities publicized

were going unpatched for periods of six months to a year after having been reported to

companies like Silicon Graphics (developers of IRIX).

Secondly, system administrators at the time were more likely to be capable of rolling

some of their own patches or workarounds and could thereby benefit from awareness of

these vulnerabilities.

The true menace came from the disclosure of weaponized proof-of-concept code, rather than

descriptions of the vulnerabilities themselves. This allowed the Moonlight Maze operators to

copy-paste their way into the history books.

Pseudo-Automation

In our experience, the most advanced modern cyberespionage operations tend to be

characterized by extremely sophisticated development efforts whose byproducts are generally

deployed by lesser skilled operators. This becomes clear in incident response engagements

that reveal the operators’ keyboard fumbling, misspellings, or retries.

That is not the case with the MM operators. In fact, the situation is inverted. The MM operators

appear to be skilled *NIX users, who are crafty and pragmatic, and in no way intimidated by on-

keyboard operations, all the while using a lesser-grade largely open-source toolkit. This

operator intensive modus operandi is documented in the logs and codified into the binaries and

scripts that allow them to pseudo-automate a stunningly vast network of victims without reliance

on modern command-and-control infrastructure nor sophisticated malware capable of

performing more complex operations on its own and serving up results without interaction.

Sample sniffer configuration script from the 1996–1999 Moonlight Maze samples

The operators developed different types of scripts that they relied on to set the tasking for

different malware components. In turn, malware meant to stay resident on the victim system

would check specifically named files in the ‘/var/tmp/’ directory for instructions or configuration.

In later phases of their campaign, this allowed the operators to simply connect to a system or

network and change these tasking files as necessary in order to instruct all infected systems to

conduct certain operations.

Infostealer (left) and IP listing and hostname resolution (right) scripts from 1996–1999 samples

Similarly, information stealing, lateral movement and exfiltration relied on well-crafted scripts

meant to cut salient information from logs and other byproducts of the malware implanted on

victim machines. The operators would always process sniffer logs for lists of domains that they

would then run through a custom tool to get the hostnames associated with these. These lists

would then be used to spread onto other victim networks associated with the already infected

machines, likely leveraging passwords they had also exfiltrated at this time.

Moonlight Maze was artisanal digital espionage: an operator- and labor- intensive campaign

with little tolerance for error and only rudimentary automation.

Meet Max, Iron, and Rinat

Compilation paths with usernames for Max, Iron, and Rinat from three different Moonlight Maze binaries.

Despite their early adoption of operational security in the form of their extensive use of relays,

the Moonlight Maze operators made many mistakes resulting in small attributory indicators and

the creation of extensive forensic artifacts. These include indications of their lackluster English

proficiency, the consistent use of a Russian word, and binary compilation information that

served as the ELF equivalent of PDB paths. The latter revealed some of the integrants of the

Moonlight Maze crew as Max, Iron, and Rinat4. Though it’s possible these were compiled on

victim machines, the three users are seen in conjunction with paths like ‘/myprg/’, ‘/mytdn/’

(<tdn> is the MM name for a set of sniffers), and ‘/exploits/’. Also noteworthy is the internal

convention for one of Iron’s early programs: <cli>, a client meant to function alongside an early

4 Rinat is a common Tatar given name meaning “Labour” or “Revolution”.

version of the LOKI2 backdoor, was internally named ‘spy_cli.c’. That small fact may suggest an

early awareness that the intention of the operation was not ‘hacking for fun’ as was popular in

the 90s but rather espionage proper.

A transliteration of the Russian “внук”.

Two binaries (<de> and the later improved <deg>) consistently use the transliterated Russian

word ‘vnuk’, meaning “grandchild” or “grandson”, to print out the PID of a twice-forked process.

One of many examples of charmingly broken English in the Moonlight Maze binaries.

On the other hand, the developers’ evidenced English proficiency was nothing to marvel at.

Binaries included strings with misspellings like “Hiding complit...n”, “receving message", and

"Error in parametrs”. They also included awkwardly phrased strings like “ERROR: Can not open

socket....", "open file for read", "Connect successful....", and "ERROR: Not connect...".

All of the tool configuration and execution, lateral movement, and exfiltration visible to us

occurred while the operators were connected to the systems through the HRTest relay site. Due

to our visibility into backend connections, we were able to profile timestamps of these

connections to serve the equivalent of a histogram as might normally be done with compilation

timestamps from PE files. The histogram places hours of operation as apparently conforming to

an 8AM workday at UTC+35.

Penquin Turla Revisited

A prescient statement by Kurt Baumgartner in the original discovery blogpost for Penquin Turla

In December 2014, Kaspersky announced the discovery of a Linux-based Turla toolkit named

Penquin Turla. The blogpost was based on one sample and another broken file and described a

quirky statically-linked backdoor that applies a BPF-filter to look for certain magic packets. It

also misidentifies the source code used as cd00r, an open-source backdoor by fx. The actual

source code was in fact LOKI2. At the time, there was no evidence of use in-the-wild but the

backdoor was lumped into the larger cluster of Turla activity by its use of a hardcoded Turla

domain (news-bbc.podzone[.]org). Since then, we would go on to discover five additional

functional samples, including variants, and a very rare trojanized version. Among these, two

5 See Appendix A for more details.

https://securelist.com/blog/research/67962/the-penquin-turla-2/
http://www.phenoelit.org/stuff/cd00r.c

samples would point to an additional known Turla IP (82.146.175[.]43) from a Lebanese satellite

connection provider.

Dating the Penquin Codebase

Most of the Penquin Turla samples found were not stripped of debugging symbols at compile

time, aiding in the process of reverse engineering these by maintaining some original names

and compilation information. These samples are statically-compiled 32-bit Linux ELF binaries

linked with C libraries for GNU/Linux kernel versions 2.2.0 and 2.2.5. The former kernel was on

January 20th, 1999, while version 2.2.5 was released later that year. A very rare Penquin Turla

sample trojanized into a Linux network time protocol daemon was linked for kernel version

2.2.18, released on December 11th, 2000, and stripped of debugging symbols.

The code statically linked into these samples includes versions of open-source libraries like

libpcap and OpenSSL from 1999-2004:

While these headers are not equivalent to the compilation timestamps available in the PE file

format, they provide start date delimiters for active development in the codebase.

Similarly, a private report detailing an incident with another Penquin Turla variant not in our

collection, details a version statically linked with both libpcap version 0.7 (2001-2002) and

SSLeay version 0.9.0b (Jan 1999). These findings lead the researchers to independently

conclude that the Penquin Turla codebase was old and likely developed in 2002.

The RUAG Report – Penquin In-the-Wild

MELANI Swiss GovCERT’s insightful analysis of an active Penquin Turla infection at RUAG

In May, 2016, the Swiss CERT published a report detailing a prolonged campaign against the

defence contractor, Ruag. The report, which is of extremely high quality and displays great

talent on the part of the Swiss GovCERT researchers, publicly discloses the first known case of

a Penquin Turla infection in-the wild.

The sample analyzed by MELANI involves a further development suggesting that Turla finally

took the advice proffered in the original Phrack article describing LOKI2:

Source: LOKI2 – the implementation (Phrack Magazine: Volume 7, Issue 51 September 01, 1997)

The original LOKI2 developers recognized that, though the purpose of their backdoor was to

enable covert communications in an infected network, the backdoor itself was not ‘clandestine’

and could be detected while operating on the infected system. Their advice was to implement

LOKI2 as a loadable kernel module or to patch the backdoor directly into the operating System.

Turla went for a version of the latter. They took the source code for a Linux system component,

the Network Time Protocol daemon (ntpd) and trojanized it to include a version of the Penquin

Turla sniffer variant, thus making it harder to spot operating in the victim system.

The RUAG report provided us with the first public victim data of a campaign leveraging Penquin

Turla in-the-wild. All samples before that had been derived from multiscanners and thereby

deprived of context. The exceptional work of MELANI not only confirmed our finding that the

Penquin samples were derived from LOKI2 but also provided a glimpse Turla’s selective

deployment of Penquin. Turla deploys the Penquin backdoor after the victim network exhibits

resilience by means of a successful cleanup of their initial incursion. The Penquin backdoor is

then leveraged to provide a beachhead during a second incursion as well as enabling

inconspicuous communications within the breached network.

While our Penquin samples don’t appear on multiscanners until late 2014, the RUAG incident

places the Penquin infection at 2011. It’s worth noting that a previously unseen sample of

Penquin Turla was uploaded to VirusTotal from a machine in Germany in March 2017.

The Argument as it Stands

An analysis of our trove of samples shows a clear development trend in which the operators

produced successive iterations of LOKI2, a favorite tool in their arsenal. In the later versions, the

Moonlight Maze team begins to bake other tools and custom functionality into LOKI2 as they

move towards a standalone malware family that would no longer require the leveraging of

multiple separate tools. Our visibility ends right where we expect the development of the modern

https://www.melani.admin.ch/melani/en/home/dokumentation/reports/technical-reports/technical-report_apt_case_ruag.html

Penquin Turla to start. The first press reports on the investigation had the effect that the MM

operators dropped the London relay site—and then improved their tools and operational

security. As a result it has been difficult to forensically link MM to Turla. We were able to detail a

development trend as well as smaller overlaps in their adoption of the LOKI2 source code as

well as similar functional patterns. The two toolkits follow a consistent linear development trend.

Moonlight Maze LOKI2 Samples Penquin Turla Samples

LOKI2 adopted and developed sometime
in 1998 or earlier.

Penquin Turla codebase actively
developed from 1999-2004.

Malware starts by implementing the
operators pseudo-automation trick of
reading a hardcoded file
‘/var/tmp/taskpid’ for instructions
and configuration.

Malware starts by reading a hidden
file in a temp or root directory
(‘/tmp/.xdfg’, ‘/root/.xfdshp1’) for
configuration.

Progressive iterations of LOKI2
obvious references to LOKI2 and error
messages, shorten strings printed out
to the command-line, and later remove
them altogether.

Malware contains none of the strings
or overt references removed from the
MM implementations of LOKI2.

Later versions remove some command-
line switches present in the original
source code and alter the remaining
ones to begin with a ‘!’ instead of
‘/’.

All of the original command-line
switches have been removed.

The forensic trendline supports our argument of continuity, but more hard technical evidence is

needed to confirm that Moonlight Maze is Turla. In the 1990s, it was rare to be a nation-state

attacker but the LOKI2 backdoor was accessible and perhaps common. In 2017, it is far more

common to be a nation-state attacker but incredibly rare to use LOKI2—or any twenty-year-old

malware code for that matter. After extensive hunting, Turla is currently still the only known

modern threat actor leveraging the LOKI2 source code. In short: the provenance is likely, but

one link is still missing. We believe that missing link is the Storm Cloud intrusion set.

Remarkably the Wall Street Journal reported in 2001 that LOKI2 is at the base of Storm Cloud,

and thus likely the lost bridge to the Penquin Turla samples.

More Light into the Maze

Investigating a historical case flips the role of disclosure and publicity. Disclosing details from an

ongoing investigation runs the risk of alerting intruders to the fact that they have been caught. A

disciplined adversary will retune their operational security and drop known infrastructure,

leading to a loss of visibility for investigators. Publicity tends to be a problem, as we know from

MM: when the operation was first covered in the press on 4 March 1999, even without a

mention of the code name, the operators instantly dropped HRTest as a hop point, cutting off

much visibility for the investigators. Publicity degrades visibility in ongoing investigations.

The reverse applies for historical cases: publicity increases visibility in historic investigations.

Again MM illustrates this effect: presenting our research at The Security Analysts Summit (SAS)

in 2016 brought the historic research to the attention of more former investigators and sources.

Published research, if done well, builds trust. Published research also means more eyes-on-the-

ball. We now turn to the SAS once again to share the research we’ve been working on for the

past nine months with the hope that the larger InfoSec community will feel motivated to conduct

further research into these forgotten operations. Our hope in particular is to shine a light on

STORM CLOUD, the next phase of the MM campaign. Little is known about Storm Cloud in

public circles. We know the codename designates an improved toolkit still based on LOKI2,

according to public reports.6 We also know it should overlap with the apparent period of

development of the Penquin Turla codebase. Given our findings so far, we expect these

samples to be of critical importance. We would therefore ask everybody who may have old

samples, especially from the early 2000s, to reach out to us and enable the next step in this

historic research—the great Moonlight Maze retro-hunt continues.

Please reach out to <penquin@kaspersky.com>, or to one of us individually.

6 Bridis, Ted, “Net Espionage Rekindles Tensions as US Tries to Identify Attackers,” Wall Street Journal,

27 June 2001.

mailto:penquin@kaspersky.com

Appendix A: The Log Files

The malware itself opened up a second, unexpected angle into the wider campaign: by

examining network sniffer log files created on victim computers, we were able to reconstruct

surprisingly granular network topology. Better yet, we managed to identify several instances in

which the operators unwittingly recorded themselves conducting live terminal sessions. From

exploit attempts to performing cleanup functions, we were able to study the operators’ detailed

modus operandi twenty years after the fact.

The network analysis procedure included two primary datasets: sniffer log files produced by the

malware and then exfiltrated to their staging servers, and the relay server’s own EtherPeek logs

recorded by David Hedges in cooperation with Scotland Yard and the FBI. But sifting the old

logs was hard at first. To do a proper analysis, we needed a platform to both visualize

connections and hunt for specific sessions. Thus Rapyd was born, a dedicated interface created

specifically to parse out and structure the various log formats.

Overview of generated graphs of Moonlight Maze traffic with histogram and search functionality in Rapyd, April 2016.

Network forensics showed just how far deeply the remote intruders had penetrated U.S.

government and academic networks. Roughly 1,600 unique IP addresses spanned computers

and servers in the US Navy, Air Force, Army Corps of Engineers, Marine Corps, NASA, the

National Oceanic and Atmospheric Administration and numerous U.S. universities. Even the

limited snapshot of data afforded to us by several months of log data was highly instructive. The

logs illustrated what the operators cared about, how they worked, and just how expansive the

campaign truly was.

Yet this analysis hinges on a relatively limited dataset. The op likely started in 1996, and

continued well into the twenty-first-century. The MM logs examined only included months of

data and telemetry, from October 1998 to March 1999. What looks like a gargantuan network

analysis therefore only encompasses a small fraction of the overall campaign. Even within our

time window, visibility was limited — we only have access to material received from one single

staging server in the UK. There were more in Canada, Norway, and Thailand. But the operation

was long, vast, and skillfully executed, so the number of staging servers could be much larger.

Retracing the Operation

The network analysis opened a unique window into the behavior of a professional intruder

predating many of the considerations we take for granted today for malicious actor. Most

communication wasn’t encrypted, patterns are easily discernible, and assets such as malicious

filenames were frequently reused. There was a clear routine to the operation spanning several

years and dozens of networks. Even so, retracing much of the operation was difficult, as the

network sniffer output only recorded four protocols; FTP, POP3, Telnet, and rlogin. Whatever

protocol was in use for potential command-and-control communication by persistent malware

was not visible to us.

The FTP logs from HRtest show that the operators predominantly relied on dynamically

assigned Russian IPs for the operation. Creating a time-of-day histogram for traffic with the

relay server correlated significantly with a GMT+3 timezone.

Time-of-day histogram (GMT) for file transfers with HRTest. Blue denotes operator connections, orange is retrieval by

targeted hosts, and green is file exfiltration. April 2016.

Communication with HRTest was facilitated through FTP for sending and receiving payloads.

Nearly all files were compressed to TGZ bundles, a format used for both exfiltrating content and

retrieving modules to be used by operators. Files never persisted on the relay server and were

instead repeatedly uploaded on demand. Exfiltrated file bundles would usually conform to an

abbreviated hostname naming convention, with some variations clearly indicative of at least a

semi-manual naming scheme — scooby becomes scoo.tgz, sco.tgz, sco1.tgz and other similar

permutations.

Example of FTP communications between US Navy server Scooby and the staging server in London.

Looking for anomalies in the graph, we discovered two instances in which the operators

accidentally recorded their own live terminal sessions on victim servers. Operators would turn

on the network capture module on a compromised server as a part of their routine procedures.

Then the operators would tunnel from one server to another in a live terminal session, seeking

to move laterally through the network. As a result, the session would be recorded on the first

server, and subsequently exfiltrated to HRTest. Discovering these recorded sessions was a a bit

like finding fossilized remains of network behavior where none should have existed.

Session 1 — Attempted Lateral Movement

The first unusual session was detected when dissecting how exploit bundles were being

propagated through the affected networks. When searching for one such bundle, eee.tar.z, a

second-tier connection unexpectedly appeared.

Search results for eee.tar.z highlighted in yellow. The connection between two non-relay nodes was unexpected.

The unusual highlighted result was between two endpoints in the University of Illinois at Urbana-

Champaign, or UIUC. The first, hspark.ece.uiuc.edu was a server in the Electrical and

Computer Engineering department and already communicating regularly with the staging server.

The second — ux10.cso.uiuc.edu — was part of the university’s Computer and Communications

Services Office. This machine had only one direct session with the staging server, in which it

retrieved two exploit bundles.

Live operator privilege escalation attempt between two University of Illinois servers, hspark and ux10.

The session between hspark and ux10 indicated that the operators used the valid credentials of

one student to achieve initial access to the server. The intruders then proceeded to open an

FTP connection to HRTest, retrieve the module package eee.tar.z, decompress and attempt to

run several of the exploits in sequence. After ufsr and rdi failed to gain root access, the

operators retrieved a second module. Several additional privilege escalation attempts failed.

The operators eventually giving up and tunneling through to a different server on the same

network, ux4.

The session revealed that the exploit attempts were largely manual, relying on direct operator

interaction with the targeted machine. Some exploits were unusually verbose, corroborating the

finding that they were compiled from existing code rather than developed originally by the

attackers. Operators dropped additional exploits on the system that were part of the

downloaded bundle but otherwise unused, an unnecessary risk. Lastly, verification attempts by

the operators were also visible. One such case included running the id command to check the

current session user, and another included checking a folder for a modified file.

Session 2 — OPSEC

A second operator session was discovered when examining the movement of exfiltrated data

through the network. While searching for permutations of files named “milo” — corresponding to

a compromised server by the same name — our interface highlighted a session between two

completely unrelated servers within the same network.

Highlighted path represents all sessions that mentioned “milo.tar”

While “milo” was indeed a US Navy endpoint previously seen communicating with the relay

server, there was no reasonable explanation for milo.tar to occur in a session between winkle

and scylla, two other endpoints within the same network. Examining the session, it was revealed

to indeed be a second accidental capture of a live session.

Part of the recorded session, showing log audits and looking for active sessions with the staging server.

The session showed the operators iterating through various logs and status checks on the

endpoint. Among these:

● last | egrep -e 194.201.203 — Look for last active sessions from HRTest. This is

particularly interesting, as an outbound FTP connection should not register here, only

inbound logins. This may reinforce the assessment that some non-FTP connections do

occur between the staging server and targeted endpoints.

● less asppp.log — Examining PPP logs.

● less sulog — Examining all attempts to run the su (superuser) command.

● less authlog — Examining all local authentication attempts.

● less idled.log — Examining all users currently connected to the endpoint.

The operators appeared to self-examine their forensic footprint in this session. Standard

reconnaissance efforts are commonplace when moving laterally through a network — but here

the logs show a focus on operational security. That the operators were looking for inbound

sessions from HRtest was highly instructive, as we have previously only observed outbound

connections from affected endpoints. Finally, the intruders compressed milo.tar locally on a

completely unrelated system, thus indicating that in some cases exfiltrated files may have been

tunneled through the internal network prior to finally transferring them to the staging server.

We suspect this tunneling could have been done through the use custom file transfer

functionality added to the

through the use of custom put/get functionality added to their more advanced covert

communications backdoor built on top of LOKI2 (detailed in the Technical Appendix B, under

<lopg>).

Appendix B: Binaries, Exploits, and Scripts

An in-depth technical analysis of all Moonlight Maze binaries, exploits, and scripts is available

as a separate document ‘Appendix B: Moonlight Maze Technical Report.’

Indicators of Compromise

Moonlight Maze Samples

IRIX Binaries

Filename MD5 Size Modification Date

df3 008ea82f31f585622353bd47fa1d84be 12KB Feb 13, 1998

eject 864e1d74e610a48c885ac719b5564eb1 17KB Feb 13, 1998

ig 4110c87e966d4ce6a03c5375353969af 77KB Jul 27, 1998

ilok 155d251e6e0dabce21ab26bd03487066 18KB Oct 6, 1998

lo (2) f8df359c909ae12f313d9444a6d958d2 41KB Jul 27, 1998

log a26bad2b79075f454c83203fa00ed50c 12KB Jan 11, 1997

loi dabee9a7ea0ddaf900ef1e3e166ffe8a 29KB Jan 3, 1997

los e59f92aadb6505f29a9f368ab803082e 37KB Oct 25, 1998

pset 86499f8e6cfc90770a65dc30f1c9939b 17KB Feb 13, 1998

sc (2) 59198b97f29fcf6e17f8653a99732a74 12KB Feb 13, 1998

snc c73bf945587aff7bc7761b16fc85b5d7 12KB Aug 24, 1996

tdni 74af85d293ceb1cfd1a47c0d794e44d5 277KB Aug 21, 1996

ua 73a518f0a73ab77033121d4191172820 17KB Oct 25, 1998

ux (2) dc9d91e8b2a90df6d25663778a312014 17KB Jul 28, 1998

xconsole f67fc6e90f05ba13f207c7fdaa8c2cab 13KB Feb 13, 1998

xlock 5937db3896cdd8b0beb3df44e509e136 16KB Feb 13, 1998

xterm f4ed5170dcea7e5ba62537d84392b280 13KB Feb 13, 1998

Solaris Binaries

Filename MD5 Size Modification Date

cle 647d7b711f7b4434145ea30d0ef207b0 9.3KB Apr 15, 1998

cli f106ab64b0dc773167a82da7635dfe27 10KB Aug 7, 1998

de 4bc7ed168fb78f0dc688ee2be20c9703 7.8KB Jul 16, 1998

deg 8b56e8552a74133da4bc5939b5f74243 8.5KB Aug 7, 1998

dt25 e32f9c0dac812bc7418685fa5dda6329 7.3KB Jun 9, 1998

dt26 7dc4f81ed408ff5a369cca737dff064c 10KB Jun 11, 1998

eje 7bc9d8da363091ad57456f8bd5027ab0 4.1KB Apr 16, 1998

ffb 26143b006710455888e01df9b58e1913 5.8KB May 20, 1998

g 338f20250b99d8dc064ba7ce8a9f48e1 68KB Jun 2, 1997

get 7c930162a676c46ac590342c91402dca 9.5KB Jul 14, 1998

lc 14cce7e641d308c3a177a8abb5457019 14KB Jul 14, 1998

lo a3164d2bbc45fb1eef5fde7eb8b245ea 18KB Apr 16, 1998

lopg 9ab532cd3c16b66d98e0e738ddbe05a1 40KB Oct 21, 1998

lopg (2) 1980958afffb6a9d5a6c73fc1e2795c2 45KB Nov 16, 1998

ora 7b86f40e861705d59f5206c482e1f2a5 20KB Apr 16, 1998

p9 2213867345a51ecf09d3a747046af78c 6.2KB Sep 30, 1998

rdi 34c3ea4d6cc814a174579d295bdd028d 25KB Oct 20, 1998

sc f684ecccd69cca88ba8508711f140240 3.4KB Apr 16, 1998

slok d0f208486c90384117172796dc07f256 8.4KB Feb 13, 1998

snc (2) 99a4a154ddecffdab5f0bf91f8bfabb8 5.1KB Sep 23, 1998

spl b4755c24e6a84e447c96b29ca6ed8633 6.1KB Oct 25, 1998

td_tr 66c8fa9569d6b5446eb865544ed67312 187KB Jul 20, 1998

tdn 927426b558888ad680829bd34b0ad0e7 91KB Jul 13, 1998

u d98796dcda1443a37b124dbdc041fe3b 9KB Apr 16, 1998

ufsr 07f070302f42219d37419d23ff9df091 5.9KB Jun 30, 1998

ux b831cbffa1aee70252bb0f6862265cc9 7.4KB Apr 16, 1998

wp e69efc504934551c6a77b525d5343241 11KB Nov 5, 1998

xk 4065d2a24240426f6e9912a22bbfbab5 8.4KB Apr 16, 1998

Scripts

Filename MD5 Size Modification

Date

daynotify.sh 10096abc73b7b7540b607c0ac1a27b49 1.3KB Feb 13, 1998

f b17c00d6af4f8ab74af168db3fc7e6b5 209 bytes Jun 11, 1998

gr d8347b2e32086bd25d41530849472b8d 342 bytes Jul 14, 1998

gr (2) 534a1a3212894cf44d8071bdd96ba738 261 bytes Sep 15, 1998

io 25bcfc394d44d717f20d416354d2126e 176 bytes Oct 12, 1998

tr 35f87672e8b7cc4641f01fb4f2efe8c3 177 bytes Jul 12, 1998

ts 84218bfec08af6a329a277cad9e0044a 60 bytes Jan 22, 1997

ts (2) 7a0d6b2fdc43b1b2a96b6409d4eed6e4 74 bytes Sep 15, 1998

tsa 58e4aa80f14c16e9292bd8f4535fb0cd 74 bytes Aug 11, 1998

Penquin Turla Samples

MD5 Size Compilation Attributes

0994d9deb50352e76b0322f48ee576c6 642KB Stripped – Broken file

edf900cebb70c6d1fcab0234062bfc28 802KB Statically compiled for GNU/Linux
2.2.0

19fbd8cbfb12482e8020a887d6427315 802KB Statically compiled for GNU/Linux

2.2.0

e079ec947d3d4dacb21e993b760a65dc 802KB Statically compiled for GNU/Linux
2.2.0

ea06b213d5924de65407e8931b1e4326 799KB Statically compiled for GNU/Linux
2.2.0

14ecd5e6fc8e501037b54ca263896a11 653KB Statically compiled for GNU/Linux
2.2.5

Note: Linux kernel version 2.2.0 was released on January 20th, 1999, while version 2.2.5 was

released later that year.

Penquin Turla Trojan Variant

MD5 Size Compilation Attributes

296dc63ba0e62a33e9821f878f9b650d 855KB Statically compiled for GNU/Linux
2.2.18, stripped
(Kernel released: December 11
2000)

Yara Rules

/*

Moonlight Maze Yara rules — TLP_GREEN
Author: Kaspersky Lab, 2017
Version: 1.0
Date: 2017-03-28

*/

rule apt_RU_MoonlightMaze_customlokitools {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-15"
 version = "1.1"
 last_modified = "2017-03-22"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect Moonlight Maze Loki samples by custom attacker-
authored strings"

 hash = "14cce7e641d308c3a177a8abb5457019"
 hash = "a3164d2bbc45fb1eef5fde7eb8b245ea"
 hash = "dabee9a7ea0ddaf900ef1e3e166ffe8a"
 hash = "1980958afffb6a9d5a6c73fc1e2795c2"
 hash = "e59f92aadb6505f29a9f368ab803082e"

strings:

 $a1="Write file Ok..." ascii wide
 $a2="ERROR: Can not open socket...." ascii wide
 $a3="Error in parametrs:" ascii wide
 $a4="Usage: @<get/put> <IP> <PORT> <file>" ascii wide
 $a5="ERROR: Not connect..." ascii wide
 $a6="Connect successful...." ascii wide
 $a7="clnt <%d> rqstd n ll kll" ascii wide
 $a8="clnt <%d> rqstd swap" ascii wide
 $a9="cld nt sgnl prcs grp" ascii wide
 $a10="cld nt sgnl prnt" ascii wide

 //keeping only ascii version of string ->
 $a11="ork error" ascii fullword

condition:

 ((any of ($a*)))

}

rule apt_RU_MoonlightMaze_customsniffer {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-15"
 version = "1.1"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect Moonlight Maze sniffer tools"
 hash = "7b86f40e861705d59f5206c482e1f2a5"
 hash = "927426b558888ad680829bd34b0ad0e7"
 original_filename = "ora;tdn"

strings:

 //strings from ora ->
 $a1="/var/tmp/gogo" fullword
 $a2="myfilename= |%s|" fullword
 $a3="mypid,mygid=" fullword
 $a4="mypid=|%d| mygid=|%d|" fullword

 //strings from tdn ->
 $a5="/var/tmp/task" fullword
 $a6="mydevname= |%s|" fullword

condition:

 ((any of ($a*)))

}

rule loki2crypto {

meta:

 author = "Costin Raiu, Kaspersky Lab"
 date = "2017-03-21"
 version = "1.0"
 description = "Rule to detect hardcoded DH modulus used in 1996/1997 Loki2
sourcecode; #ifdef STRONG_CRYPTO /* 384-bit strong prime */"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 hash = "19fbd8cbfb12482e8020a887d6427315"
 hash = "ea06b213d5924de65407e8931b1e4326"
 hash = "14ecd5e6fc8e501037b54ca263896a11"
 hash = "e079ec947d3d4dacb21e993b760a65dc"
 hash = "edf900cebb70c6d1fcab0234062bfc28"

strings:

 $modulus={DA E1 01 CD D8 C9 70 AF C2 E4 F2 7A 41 8B 43 39 52 9B 4B 4D E5 85
F8 49}

condition:

 (any of them)

}

rule apt_RU_MoonlightMaze_de_tool {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-27"
 version = "1.0"
 last_modified = "2017-03-27"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect Moonlight Maze 'de' and 'deg' tunnel tool"

 hash = "4bc7ed168fb78f0dc688ee2be20c9703"
 hash = "8b56e8552a74133da4bc5939b5f74243"

strings:

 $a1="Vnuk: %d" ascii fullword
 $a2="Syn: %d" ascii fullword

 //%s\r%s\r%s\r%s\r ->
 $a3={25 73 0A 25 73 0A 25 73 0A 25 73 0A}

condition:

 ((2 of ($a*)))

}

rule apt_RU_MoonlightMaze_cle_tool {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-27"
 version = "1.0"
 last_modified = "2017-03-27"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect Moonlight Maze 'cle' log cleaning tool"
 hash = "647d7b711f7b4434145ea30d0ef207b0"

strings:

 $a1="./a filename template_file" ascii wide
 $a2="May be %s is empty?" ascii wide
 $a3="template string = |%s|" ascii wide
 $a4="No blocks !!!"
 $a5="No data in this block !!!!!!" ascii wide
 $a6="No good line"

condition:

 ((3 of ($a*)))

}

rule apt_RU_MoonlightMaze_xk_keylogger {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-27"
 version = "1.0"
 last_modified = "2017-03-27"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect Moonlight Maze 'xk' keylogger"

strings:

 $a1="Log ended at => %s"
 $a2="Log started at => %s [pid %d]"
 $a3="/var/tmp/task" fullword
 $a4="/var/tmp/taskhost" fullword
 $a5="my hostname: %s"
 $a6="/var/tmp/tasklog"
 $a7="/var/tmp/.Xtmp01" fullword
 $a8="myfilename=-%s-"
 $a9="/var/tmp/taskpid"
 $a10="mypid=-%d-" fullword
 $a11="/var/tmp/taskgid" fullword
 $a12="mygid=-%d-" fullword

condition:

 ((3 of ($a*)))

}

rule apt_RU_MoonlightMaze_encrypted_keylog {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-27"
 version = "1.0"
 last_modified = "2017-03-27"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect Moonlight Maze encrypted keylogger logs"

strings:

 $a1={47 01 22 2A 6D 3E 39 2C}

condition:

 ($a1 at 0)

}

rule apt_RU_MoonlightMaze_IRIX_exploit_GEN {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-27"
 version = "1.0"
 last_modified = "2017-03-27"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect Irix exploits from David Hedley used by Moonlight Maze
hackers"
 reference2 = "https://www.exploit-db.com/exploits/19274/"
 hash = "008ea82f31f585622353bd47fa1d84be" //df3
 hash = "a26bad2b79075f454c83203fa00ed50c" //log
 hash = "f67fc6e90f05ba13f207c7fdaa8c2cab" //xconsole
 hash = "5937db3896cdd8b0beb3df44e509e136" //xlock
 hash = "f4ed5170dcea7e5ba62537d84392b280" //xterm

strings:

 $a1="stack = 0x%x, targ_addr = 0x%x"
 $a2="execl failed"

condition:

 (uint32(0)==0x464c457f) and (all of them)

}

rule apt_RU_MoonlightMaze_u_logcleaner {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-27"
 version = "1.0"
 last_modified = "2017-03-27"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect log cleaners based on utclean.c"
 reference2 = "http://cd.textfiles.com/cuteskunk/Unix-Hacking-Exploits/utclean.c"
 hash = "d98796dcda1443a37b124dbdc041fe3b"
 hash = "73a518f0a73ab77033121d4191172820"

strings:

 $a1="Hiding complit...n"
 $a2="usage: %s <username> <fixthings> [hostname]"
 $a3="ls -la %s* ; /bin/cp ./wtmp.tmp %s; rm ./wtmp.tmp"

condition:

 (uint32(0)==0x464c457f) and (any of them)

}

rule apt_RU_MoonlightMaze_wipe {

meta:

 author = "Kaspersky Lab"
 date = "2017-03-27"
 version = "1.0"
 last_modified = "2017-03-27"
 reference = "https://en.wikipedia.org/wiki/Moonlight_Maze"
 description = "Rule to detect log cleaner based on wipe.c"
 reference2 = "http://www.afn.org/~afn28925/wipe.c"
 hash = "e69efc504934551c6a77b525d5343241"

strings:

 $a1="ERROR: Unlinking tmp WTMP file."
 $a2="USAGE: wipe [u|w|l|a] ...options..."
 $a3="Erase acct entries on tty : wipe a [username] [tty]"
 $a4="Alter lastlog entry : wipe l [username] [tty] [time] [host]"

condition:

 (uint32(0)==0x464c457f) and (2 of them)

}

