
THE REGIN PLATFORM
NATION-STATE OWNAGE
OF GSM NETWORKS
Kaspersky Lab Report

Version 1.0
24 November 2014

2

Contents
Introduction, history ... 3

Initial compromise and lateral movement .. 3

The Regin platform ... 4
Stage 1 – 32/64 bit ... 4
Stage 2 – loader – 32-bit .. 7
Stage 2 – loader – 64-bit .. 8
Stage 3 – 32-bit – kernel mode manager “VMEM.sys” ... 8
Stage 3 – 64-bit .. 9
Stage 4 (32-bit) / 3 (64-bit) – dispatcher module, ‘disp.dll’ .. 9

32-bit ... 9
64-bit ... 9

Stage 4 – Virtual File Systems (32/64-bit) ...10

Unusual modules and artifacts ...16
Artifacts ...16
GSM targeting ...18

Communication and C&C...20

Victim statistics ...22

Attribution ...23

Conclusions ..23

Technical appendix and indicators of compromise ..24
Yara rules ...24
MD5s ...25

Registry branches used to store malware stages 2 and 3 ..26
C&C IPs ..26
VFS RC5 decryption algorithm ...27

TLP: GREEN Contact: intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

3

“Beware of Regin, the master! His heart is poisoned. He would be thy bane...” -
“The Story of Siegfried” by James Baldwin

Introduction, history
In the spring of 2012, following a Kaspersky Lab presentation on the unusual facts surrounding the Duqu
malware (http://www.kaspersky.com/about/press/major_malware_outbreaks/duqu), a security researcher
contacted us and mentioned that Duqu reminded him of another high-end malware incident. Although he
couldn’t share a sample, the researcher mentioned ‘Regin’, a type of malware attack that is now dreaded
by security administrators in many government agencies around the world.

For the past three years we have been tracking this most elusive malware all around the world. From time
to time samples would appear on various multi-scanner services, but they were all unrelated to each other,
cryptic in functionality, and lacking in context.

It is unknown exactly when the first samples of Regin appeared in the wild. Some of them have timestamps
dating back to 2003.

The victims of Regin fall into the following categories:

•	 Telecom operators

•	 Government institutions

•	 Multinational political bodies

•	 Financial institutions

•	 Research institutions

•	 Individuals involved in advanced mathematical/cryptographic research

So far, we’ve observed two main objectives of the attackers:

•	 Intelligence gathering

•	 Facilitating other types of attacks

While in most cases the attackers were focused on extracting sensitive information such as emails and other elec-
tronic documents, we have observed cases where the attackers compromised telecom operators to enable the
launch of additional sophisticated attacks. This is discussed in detail in the GSM attacks section, below.

Perhaps one of the most well-known victims of Regin was Jean Jacques Quisquater (https://en.wikipedia.org/
wiki/Jean-Jacques_Quisquater), a well-known Belgian cryptographer. In February 2014, Quisquater announced
he was the victim of a sophisticated cyber-intrusion incident. We were able to obtain samples from the Quisquater
case and confirm they belong to the Regin platform.

Another victim of Regin was a computer we call the ‘Magnet of Threats’. The computer belongs to a certain
research institution and, besides Regin, it has been attacked by Animal Farm, Itaduke, Mask/Careto, Turla,
and some other advanced threats that do not have public names, all co-existing happily on the same computer
at some point.

Initial compromise and lateral movement
The exact method used for the initial compromise remains a mystery, although several theories exist, including
use of man-in-the-middle attacks with browser zero-day exploits. For some of the victims we observed tools and
modules designed for lateral movement. So far we have not encountered any exploits. The replication modules
are copied to remote computers using Windows administrative shares and then executed. Obviously this tech-
nique requires administrative privileges inside the victim’s network. In several cases the infected machines
were also Windows domain controllers. Targeting of system administrators via web-based exploits is a simple
way of achieving immediate administrative access to the entire network.

TLP: GREEN Contact: intelreports@kaspersky.com

http://www.kaspersky.com/about/press/major_malware_outbreaks/duqu
https://en.wikipedia.org/wiki/Jean-Jacques_Quisquater
https://en.wikipedia.org/wiki/Jean-Jacques_Quisquater
mailto:intelreports%40kaspersky.com?subject=

4

The Regin platform
Although some private research groups refer to it as the ‘Regin malware’, it is not entirely accurate to use
the term malware in this case. In essence, Regin is a cyberattack platform, which the attackers deploy in victim
networks for total remote control at all levels.

The platform is extremely modular in nature and has multiple stages.

Regin platform diagram

Stage 1 – 32/64 bit

Known MD5s:

01c2f321b6bfdb9473c079b0797567ba
06665b96e293b23acc80451abb413e50
187044596bc1328efa0ed636d8aa4a5c
1c024e599ac055312a4ab75b3950040a
26297dc3cd0b688de3b846983c5385e5
2c8b9d2885543d7ade3cae98225e263b
47d0e8f9d7a6429920329207a32ecc2e
4b6b86c7fec1c574706cecedf44abded
6662c390b2bbbd291ec7987388fc75d7
744c07e886497f7b68f6f7fe57b7ab54
b269894f434657db2b15949641a67532
b29ca4f22ae7b7b25f79c1d4a421139d
b505d65721bb2453d5039a389113b566
ba7bb65634ce1e30c1e5415be3d1db1d
bfbe8c3ee78750c3a520480700e440f8
d240f06e98c8d3e647cbf4d442d79475
db405ad775ac887a337b02ea8b07fddc
ffb0b9b5b610191051a7bdf0806e1e47

TLP: GREEN Contact: intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

5

In general, the first samples victims detect in their networks are stage 1 loaders. These are the easiest to notice
because they are the only executables that exist directly on the victim’s computer.

These samples use an odd technique to load the next stages, which until recently was unique to Regin. Inter-
estingly, in mid-2012, the ZeroAccess gang implemented a very similar loading mechanism, which possibly
suggests it learned about Regin and its unique features. (See http://www.symantec.com/connect/blogs/
trojanzeroaccessc-hidden-ntfs-ea).

The particular feature used (or abused) by Regin to hide its next stages is called NTFS Extended Attributes
(EA). Originally, these were implemented in Windows NT for compatibility with OS/2 applications; however, they
made their way into later versions of Windows, namely 2000, XP and Vista. The malware hides its modules in
NTFS EAs, splitting large files into several blocks of limited size. These are dynamically joined, decrypted and
executed in memory.

Most of the stage 1 samples we have seen appear to have been built on top of other source code projects,
which are ‘piggybacked’; for instance, the Ser8UART project:
http://www.mirrorservice.org/sites/downloads.sourceforge.net/s/se/ser8uart-driver/ser8uart-driver/
Ser8UART%20%201.1.2.1/.

For instance, the Regin loader with md5 01c2f321b6bfdb9473c079b0797567ba was built on top of the
Ser8UART source code. A careful examination however spots the encrypted configuration block at offset 0x5600.

We can assume the attackers take various low-level open-source projects or Windows DDK source codes and
merge them together with their malicious loader. Hence, each stage 1 loader looks very different from others,
as it contains random useless code from various other programs. This technique makes it more difficult to build
reliable detection for the loaders.

Despite the differences, all stage 1 samples are similar in functionality. They contain an encrypted config block
that points to the next stages:

Once decrypted, the block contains several folder names and registry key names:

TLP: GREEN Contact: intelreports@kaspersky.com

http://www.symantec.com/connect/blogs/trojanzeroaccessc-hidden-ntfs-ea
http://www.symantec.com/connect/blogs/trojanzeroaccessc-hidden-ntfs-ea
http://www.mirrorservice.org/sites/downloads.sourceforge.net/s/se/ser8uart-driver/ser8uart-driver/Ser8UART%20%201.1.2.1/
http://www.mirrorservice.org/sites/downloads.sourceforge.net/s/se/ser8uart-driver/ser8uart-driver/Ser8UART%20%201.1.2.1/
mailto:intelreports%40kaspersky.com?subject=

6

In the example above, the stage 1 tries to load a second stage from the extended attributes of the system direc-
tory specified in the configuration block (in our case, the WINDOWS folder). It also tries to read additional data
from the EAs of the second directory (in our case, the WINDOWS\fonts directory). The second attribute value
is optional and may have been used to overcome size limitations.

If the first EA data block is missing, the module also tries to read the complete body of the 2nd stage from
a registry value using the key and value names from the configuration block.

The body of the second stage is encrypted with one of two algorithms that are simple variations of XOR, and
is supposed to be a PE file. The first stage loads that file in memory and calls its entry point function.

The 64-bit variant works in a slightly different way. Instead of storing the 2nd stage in the registry or extended
attributes, the attackers preferred to store it after the end of the last partition on disk.

Known filenames for the 64-bit stage 1:

•	 system32\wsharp.dll – detected on a victim machine in Germany

•	 system32\wshnetc.dll – detected on a victim machine in Belgium

All the stage 1 modules for 64-bit systems were signed with fake digital certificates. The two fake certificates we
identified are supposed to belong to Microsoft Corporation and Broadcom Corporation. During the infection phase,
the attackers inject a trusted CA in the certificates chain, which instructs the system to trust their signatures.

TLP: GREEN Contact: intelreports@kaspersky.com

7

Here is what the hard drive of a 64-bit system infected with Regin looks like:

Interestingly, while the 32-bit Regin stage 1 runs in kernel mode, on 64-bit systems the attacker code starts in user
mode. This is perhaps due to the fact that it is more difficult to run kernel mode on modern Windows 64-bit systems.

Stage 2 – loader – 32-bit

Known MD5s:

18d4898d82fcb290dfed2a9f70d66833

b9e4f9d32ce59e7c4daf6b237c330e25

The second stage for 32-bit systems is implemented as a driver module. It has a configuration block encrypted in
a similar way to the first stage module. The configuration block contains the names of two system directories that
hold the encrypted third stage in their extended attributes. It also has the name of a registry value that may hold
the body of the third stage in case the EAs are missing (for computers with a FAT/FAT32-formatted system disk).

Once the encrypted third stage is read from the registry or NTFS EAs, it is decrypted using the RC5 algorithm
and a fixed 16-byte key that is hardcoded in the second stage. Then, it is decompressed using the NRV2e algo-
rithm from the open-source UCL library. The second stage module loads the resulting binary in memory, vali-
dates that it is a valid PE file, and calls its entry point in a system thread.

The second stage also creates a marker file that can be used to identify the infected machine. Known filenames
for this marker are:

•	 %SYSTEMROOT%\system32\nsreg1.dat

•	 %SYSTEMROOT%\system32\bssec3.dat

•	 %SYSTEMROOT%\system32\msrdc64.dat

These files have their timestamp set to the timestamp of the system file ‘%SYSTEMROOT%\system32\lsass.exe’

TLP: GREEN Contact: intelreports@kaspersky.com

8

The second stage has additional code for removing the startup code of Regin if signaled by the third stage. Its
configuration data contains the locations of the first three stages, including registry keys, names of the directo-
ries that hold the encrypted EAs, and the location of the initial driver.

Essentially, the second stage can remove all the Regin stages from the system, effectively cleaning the machine
and leaving only the encrypted VFS behind.

Decrypted configuration block of the second stage

Stage 2 – loader – 64-bit

Known MD5:

d446b1ed24dad48311f287f3c65aeb80

The 64-bit version of the second stage loader is a PE DLL module, since the 64-bit bootstrap chain operates
in user mode.

Just like the first stage, it loads the encrypted body of the next stage from the end of the physical disk and
decrypts it with a hardcoded RC5 key, then decompresses it using the nrv2 algorithm from the UCL library.

After decryption and decompression, the code checks if the next stage is a Windows PE DLL module, and if it is,
it loads and executes it.

Stage 3 – 32-bit – kernel mode manager “VMEM.sys”

Known MD5s:

8486ec3112e322f9f468bdea3005d7b5

da03648948475b2d0e3e2345d7a9bbbb

On 32-bit systems, the third stage is implemented as a driver module and provides the basic functionality of
the malicious framework. It is responsible for operating the encrypted virtual file system and loading additional
plugins, and also provides several built-in plugins for the entire framework.

The module initializes the framework, sets up the plugin system and starts the actual work cycle of the malware.
It also passes execution to the plugin id 50221 that is loaded from the VFS.

TLP: GREEN Contact: intelreports@kaspersky.com

9

Built-in plugins provided by this module are:

Id Plugin description

1 Core framework functionality

13 UCL library for compression and decompression using the nrv2 family of algorithms

15 RC5 encryption and decryption facilities

61 API for manipulating the encrypted virtual file system (VFS)

7 API for manipulating the encrypted virtual file system (VFS)

50225 API for code injection and kernel-mode hooking

50215 System information

50223 Module notification routines

50111 Utilities

Stage 3 – 64-bit
On 64-bit Windows systems, stage 3 is missing. Stage 2 loads the dispatcher directly from the disk and runs it.

Stage 4 (32-bit) / 3 (64-bit) – dispatcher module, ‘disp.dll’

32-bit

Known MD5s:

1e4076caa08e41a5befc52efd74819ea

68297fde98e9c0c29cecc0ebf38bde95

6cf5dc32e1f6959e7354e85101ec219a

885dcd517faf9fac655b8da66315462d

a1d727340158ec0af81a845abd3963c1

64-bit

Known MD5:

de3547375fbf5f4cb4b14d53f413c503

The dispatcher library is the user-mode core of the framework. It is loaded directly as the third stage of the 64-bit
bootstrap process, or extracted and loaded from the VFS as module 50221 as the fourth stage on 32-bit systems.

It implements a set of internal plugins:

Id Plugin description

1 Core framework functionality

13 UCL library for compression and decompression using the nrv2 family of algorithms

15 RC5 encryption and decryption facilities

TLP: GREEN Contact: intelreports@kaspersky.com

10

Id Plugin description

61 API for manipulating the encrypted virtual file system (VFS)

7 API for manipulating the encrypted virtual file system (VFS)

11 File writer

51 Autostart installation routines

17 In-memory storage object

19 Configuration storage object

50035 Winsock-based network transport

25 Network transport using packet filters

9 Network transport-related utilities

The dispatcher takes care of the most complicated tasks of the Regin platform, such as providing an API to
access virtual file systems, basic communications and storage functions, as well as network transport sub-
routines. In essence, the dispatcher is the brain that runs the entire platform.

Stage 4 – Virtual File Systems (32/64-bit)
The most interesting code from the Regin platform is stored in encrypted file storages, known as Virtual File
Systems (VFSes).

During our analysis we were able to obtain 24 VFSes from multiple victims around the world. Generally, these
have random names and can be located in several places in the infected system:

Folder on disk File name Description

C:\Windows\System32\config\ SystemAudit.Evt, SystemLog.
Evt, SecurityLog.Evt, Security-
Audit.Evt, CACHE, SESSIONMGR

Old / ancient style,
still around

C:\Windows\System32\ UsrClass.dat Old / ancient style,
still around

C:\WINDOWS\pchealth\helpctr\Database cdata.dat,

cdata.edb

Old / ancient style,
still around

C:\Windows\System32\config\ UsrEvent.evt, ApplicationLog.Evt Inside VFS, 6th stage

C:\Windows\Panther\ setup.etl.000 Used in a 64-bit infection

C:\Windows\System32\wbem\repository\ INDEX2.DATA,

OBJECTS2.DATA

New style encryption,
May 2014

C:\Windows\System32\ dnscache.dat, mregnx.dat

displn32.dat, dmdskwk.dat,
nvwrsnu.dat,

tapiscfg.dat

New style encryption,
May 2014

TLP: GREEN Contact: intelreports@kaspersky.com

11

Each VFS has a structure that is very similar to a real disk file system such as FAT. The VFS files start with a header
that provides basic information required to operate the file system. The header is followed by the bitmap of used/
free sectors and then by the file table.

Offset Size Field description

00 02 Sector size

02 02 Maximum number of sectors

04 02 Maximum number of files

06 01 Unknown

07 04 CRC32 of first seven bytes of the header with seed 0x45

0B 04 Size of the file ID field, in bytes

0F 02 Number of files

11 maxSectors/8 Sector usage bitmap

File table

Sectors

Files are described by file table entries:

Offset Size Field description

00 04 CRC32 of file contents with seed 0x27

04 04 File size

08 04 Offset of the first sector

0C Size of the file ID field File ID / Plugin ID

Each sector starts with a 32-bit integer that is the offset of the next sector of the file.

00 Offset of the next sector

04 (Sector size)*byte of file data

An example:

•	 File record at offset 0x122, file ID 50221, offset of the first sector 0x7B13

•	 Sector at 0x7B13, next sector at 0x7D13

•	 Sector at 0x7D13, next sector at 0x7F13,

•	 Sector at 0x7F13, next sector at 0x8113, etc.

TLP: GREEN Contact: intelreports@kaspersky.com

12

Example of Regin VFS parsing

Although the structures of the file system are unencrypted, the file entries are encrypted. The encryption algo-
rithm used is RC5, and many records are also compressed using the nrv2e algorithm from the UCL library. UCL
is an open source implementation of the proprietary NRV (‘Not Really Vanished’) compression algorithm, and
was originally used by the UPX tool. The reason why the attackers chose UCL is simple: it’s small, compact and
requires little to no additional memory for decompression.

Each VFS we encountered was encrypted with a 16 bytes key, which can vary from victim to victim. Based on
our experience, most files were however encrypted with the same key, {73 23 1F 43 93 E1 9F 2F 99 0C 17 81
5C FF B4 01} stored in the dispatcher module or VMEM.sys kernel core.

VFS RC5 decryption key inside the dispatcher module (disp.dll)

In all, we observed about a dozen different VFS keys.

The following plugins were observed inside the VFSes we collected. These are all identified by a 16-bit number.
The plugins are referenced by these numbers; they are like filenames on a normal file system and allow the
dispatcher to easily load or reference them.

The binary modules are referenced by these numbers as plugin identifiers and usually have similar internal DLL
names; e.g., the plugin with ID ‘50121’ will have the internal name ‘50121.dll’ in its export table. Compressed
binary modules are accompanied by binary files with the same ID. These files contain the size of the decom-
pressed module and are not included in the description.

TLP: GREEN Contact: intelreports@kaspersky.com

13

Known data blocks and their configuration IDs:

0 4 bytes, unknown

1 Configuration data; timestamped binary data

4 4 bytes, unknown

9 Transport list and configurations, including peer hostnames and addresses

11 Location of an additional ‘.evt’ file, usually ‘ApplicationLog.evt’

13 Configuration data

14 Configuration data

15 Peer encryption keys

19 Peer network configuration data

25 Packet filter configuration

51 4 bytes, unknown

10001 Strings: ‘legspinv2.6’, ‘WILLISCHECKv2.0’, additional configuration data

10207 Configuration data

10404 Configuration data

10405 Configuration data

10505 1 byte; unknown

50009 Configuration data

50013 List of processes (‘snort.exe’, ‘wireshark.exe’, ‘rundll32.exe’, etc.)

50049 Log of GSM base station commands. Very rare, most interesting

50079 Location of a temporary file

50121 Drive names

50139 Event log provider names

50181 Data used by network transport plugins

50185 Plugin configuration

50227 Plugin configuration

50233 Process file name list (Explorer.exe, VMWareService.exe, Update.exe, Msiexec.exe,
MailService.exe, etc.)

56001 Plugin configuration

57003 Configuration data

Known executable modules and their plugin IDs:

0 Data only

1 Core framework functionality

3 ‘3.sys’ file timestamp manipulation; utilities

TLP: GREEN Contact: intelreports@kaspersky.com

14

9 Network transport-related utilities

15 RC5 encryption and decryption facilities

25 Network transport using packet filters

27 ICMP network listener using raw sockets

10001 Command-line data collection and administration tools

10105 Utilities

10107 User logon and impersonation, user and domain name collection

10207 ‘pp.dll’ Keylogger and clipboard sniffer

10211 Network share enumeration and manipulation

10309 Pipe/mailslot backend for plugin 10207

10405 Timestamp conversions

10507 Extraction from the protected storage and credential storages

11101 Detection of process hooks, directory enumeration

11701 Collects information about connected USB storage devices, creates storage files

20005 Driver installation/removal routines

20027 Collects information about sessions, installed browsers and proxy settings

20029 Remote registry manipulation routines

20073 Interception of system network drivers

50001 File system data collection and manipulation

50011 File data extraction

50013 Searches for potentially dangerous processes by module path/name (sniffers, debug-
gers, etc.)

50015 Retrieves current system time in Unix timestamp format

50017 Time-related utilities

50019 Sniffer using a packet filter

50025 System information, network share enumeration and scans

50029 Sniffer utilities

50033 Event log hooks

50035 Winsock-based network transport

50037 Network transport over HTTP

50047 Sniffer utilities

50049 HTTP/SMTP/SMB credentials sniffer

50051 Network transport over HTTPS

50053 Sniffer utilities

TLP: GREEN Contact: intelreports@kaspersky.com

15

50061 Utilities

50063 BPF filter parser

50073 Network routing utilities

50079 Temporary file manipulation

50081 Network transport and configuration utilities

50097 DNS sniffer

50101 Extended system information; task scheduler data

50113 Utilities

50115 NDIS filter

50117 Network information: connections, adapters, DNS cache, statistics

50121 File system traversal

50123 HTTPS server, ‘Microsoft-IIS/6.0’

50139 Windows event log reader

50185 Dumping users’ password hashes (LM database)

50211 Driver hooking and hook detection

50215 ‘BEEP’ driver, used by the 50211 plugin

50219 Injects plugins in processes

50221 ‘disp.dll’ user-mode core of the framework

50223 Module notification routines

50225 API for code injection and kernel-mode hooking

50227 Code injection and hooking utilities

50231 Replication using network shares and local persistence, remote filename used: ‘ADMIN$\
SYSTEM32\SVCSTAT.EXE’

50233 Plugin injection utilities

50251 Keyboard driver hooking

50271 Network transport over SMB (named pipes)

55001 E-mail message extraction module ‘U_STARBUCKS’

55011 MS Exchange data extraction, appointment information

55007 POP3 proxy server, used in conjunction with plugin 55001

56001 Winsock networking routines

The attackers can dynamically add and delete plugins inside the VFS and each victim installation has a different
set of plugins depending on the type of activity the attackers need to execute. For example, only some of the
VFSes we have seen had lateral movement modules, designed for infecting other computers in the network.

TLP: GREEN Contact: intelreports@kaspersky.com

16

Unusual modules and artifacts
In this section we describe some of the most interesting findings about Regin.

Artifacts
With high-end APT groups such as the one behind Regin, mistakes are very rare. Nevertheless, they do happen.
Some of the VFSes we analyzed contain words that appear to be the respective codenames of the modules
deployed on the victim:

•	 legspinv2.6 and LEGSPINv2.6

•	 WILLISCHECKv2.0

•	 HOPSCOTCH

Another module we found, which is a plugin type 55001.0, references U_STARBUCKS:

Finally, the word ‘shit’ appears in many places throughout the code and modules.

TLP: GREEN Contact: intelreports@kaspersky.com

17

TLP: GREEN Contact: intelreports@kaspersky.com

18

GSM targeting
The most interesting aspect we have found so far regarding Regin relates to an infection of a large GSM operator.
One VFS encrypted entry we located had internal id 50049.2, and appears to be an activity log on a GSM Base
Station Controller.

From https://en.wikipedia.org/wiki/Base_station_subsystem

According to the GSM documentation (http://www.telecomabc.com/b/bsc.html): ‘The Base Station Controller
(BSC) is in control of and supervises a number of Base Transceiver Stations (BTS). The BSC is responsible for
the allocation of radio resources to a mobile call and for the handovers that are made between base stations
under his control. Other handovers are under the control of the MSC.’

Here’s a look at the decoded Regin GSM activity log:

TLP: GREEN Contact: intelreports@kaspersky.com

https://en.wikipedia.org/wiki/Base_station_subsystem
http://www.telecomabc.com/b/bsc.html
http://www.telecomabc.com/b/bts.html
http://www.telecomabc.com/m/msc.html

19

This log is about 70KB in size and contains hundreds of entries like the ones above. It also includes timestamps
that indicate exactly when the command was executed.

The entries in the log appear to contain Ericsson OSS MML (Man-Machine Language as defined by ITU-T)
commands (see https://en.wikipedia.org/wiki/Operations_support_system).

Here’s a list of some commands issued on the Base Station Controller, together with some of their timestamps:

2008-04-25 11:12:14: rxmop:moty=rxotrx;
2008-04-25 11:58:16: rxmsp:moty=rxotrx;
2008-04-25 14:37:05: rlcrp:cell=all;
2008-04-26 04:48:54: rxble:mo=rxocf-170,subord;
2008-04-26 06:16:22: rxtcp:MOty=RXOtg,cell=kst022a;
2008-04-26 10:06:03: IOSTP;
2008-04-27 03:31:57: rlstc:cell=pty013c,state=active;
2008-04-27 06:07:43: allip:acl=a2;
2008-04-28 06:27:55: dtstp:DIP=264rbl2;
2008-05-02 01:46:02: rlstp:cell=all,state=halted;
2008-05-08 06:12:48: rlmfc:cell=NGR035W,mbcchno=83&512&93&90&514&522,listtype=active;
2008-05-08 07:33:12: rlnri:cell=NGR058y,cellr=ngr058x;
2008-05-12 17:28:29: rrtpp:trapool=all.

Descriptions for the commands:

rxmop - check software version type;

rxmsp - list current call forwarding settings of the Mobile Station;

rlcrp - list off call forwarding settings for the Base Station Controller;

rxble - enable (unblock) call forwarding;

rxtcp - show the Transceiver Group of particular cell;

allip - show external alarm;

dtstp - show Digital Path (DIP) settings (DIP is the name of the function used
for supervision of the connected PCM (Pulse Code Modulation) lines);

rlstc - activate cell(s) in the GSM network;

TLP: GREEN Contact: intelreports@kaspersky.com

https://en.wikipedia.org/wiki/Operations_support_system

20

rlstp - stop cell(s) in the GSM network;

rlmfc - add frequencies to the active broadcast control channel allocation list;

rlnri - add cell neighbor;

rrtpp - show radio transmission transcoder pool details.

The log seems to contain not only the executed commands but also usernames and passwords of some engi-
neering accounts:

sed[snip]:Alla[snip]
hed[snip]:Bag[snip]
oss:New[snip]
administrator:Adm[snip]

In total, the log indicates that commands were executed on 136 different cells. Some of the cell names include
‘prn021a, gzn010a, wdk004, kbl027a, etc...’. The command log we obtained covers a period of about one
month, from April 25, 2008 through May 27, 2008. It is unknown why the commands stopped in May 2008
though; perhaps the infection was removed or the attackers achieved their objective and moved on. Another
explanation is that the attackers improved or changed the malware to stop saving logs locally and that is why
only some older logs were discovered.

Communication and C&C
The C&C mechanism implemented in Regin is extremely sophisticated and relies on communication drones
deployed by the attackers throughout the victim networks. Most victims communicate with another machine
in their own internal network through various protocols as specified in the config file. These include HTTP
and Windows network pipes. The purpose of such a complex infrastructure is to achieve two goals: (i) to give
attackers access deep into the network, potentially bypassing air gaps; and (ii) to restrict as much as possible
the traffic to the C&C.

Here’s a look at the decoded configurations::

17.3.40.101 transport 50037 0 0 y.y.y.5:80 ; transport 50051 217.y.y.yt:443
17.3.40.93 transport 50035 217.x.x.x:443 ; transport 50035 217.x.x.x:443
50.103.14.80 transport 27 203.199.89.80 ; transport 50035 194.z.z.z:8080
51.9.1.3 transport 50035 192.168.3.3:445 ; transport 50035 192.168.3.3:9322
18.159.0.1 transport 50271 DC ; transport 50271 DC

In the above table we see configurations extracted from several victims that bridge together infected machines
in what appears to be virtual networks: 17.3.40.x, 50.103.14.x, 51.9.1.x, 18.159.0.x. One of these routes
reaches out to the ‘external’ C&C server at 203.199.89.80.

The numbers right after the ‘transport’ indicate the plugin that handles the communication. These are in our case:

•	 27 - ICMP network listener using raw sockets

•	 50035 - Winsock-based network transport

•	 50037 - Network transport over HTTP

•	 50051 - Network transport over HTTPS

•	 50271 - Network transport over SMB (named pipes)

The machines located on the border of the network act as routers, effectively connecting victims from inside
the network with C&Cs on the Internet.

After decoding all the configurations we have collected, we were able to identify the following external C&Cs.

TLP: GREEN Contact: intelreports@kaspersky.com

21

C&C server IP Location Description

61.67.114.73 Taichung, Taiwan Chwbn

202.71.144.113 Chetput, India Chennai Network Operations (team-m.co)

203.199.89.80 Thane, India Internet Service Provider

194.183.237.145 Brussels, Belgium Perceval S.a.

One particular case includes a country in the Middle East. It was rather astonishing, so we thought it should be
mentioned. In this country all the victims we identified communicate with each other, forming a peer-to-peer
network. The P2P network includes the president’s office, a research center, an educational institution
network and a bank.

Spread across the country, these victims are all interconnected with each other. One of the victims contains a
translation drone, which has the ability to forward packets outside the country, to the C&C in India.

This represents a rather interesting command-and-control mechanism, which is guaranteed to raise little suspi-
cion. For instance, if all commands to the president’s office are sent through the bank’s network, then all the
malicious traffic visible to the president’s office sysadmins will only be with the bank, in the same country.

TLP: GREEN Contact: intelreports@kaspersky.com

22

Victim statistics
Over the past two years we have been collecting statistics on the attacks and victims of Regin. These were
aided by the fact that even after the malware is uninstalled, certain artifacts are left behind, which can help
identify an infected (but cleaned) system. For instance, we have seen several cases where the systems were
cleaned but the ‘msrdc64.dat’ infection marker was left behind.

So far, victims of Regin have been identified in 14 countries:

•	 Afghanistan

•	 Algeria

•	 Belgium

•	 Brazil

•	 Fiji

•	 Germany

•	 India

•	 Indonesia

•	 Iran

•	 Kiribati

•	 Malaysia

•	 Pakistan

•	 Russia

•	 Syria

In total, we counted 27 different victims, although it should be pointed out that the definition of a victim here
refers to a full entity, including its entire network. The number of unique PCs infected with Regin is of course
much, much higher.

From the map above, Fiji and Kiribati are unusual, because we rarely see such advanced malware in such
remote, tiny countries. In particular, the victim in Kiribati is most unusual. To put this into context, Kiribati is a
small island in the Pacific with a population around 100,000. According to experts, Kiribati is probably going to
become one of the first victims of global warming, as it will be under water by 2050. (http://www.businessin-
sider.com/pacific-island-nation-kiribati-sinking-2014-5?op=1)

TLP: GREEN Contact: intelreports@kaspersky.com

http://www.businessinsider.com/pacific-island-nation-kiribati-sinking-2014-5?op=1
http://www.businessinsider.com/pacific-island-nation-kiribati-sinking-2014-5?op=1

23

Attribution
Considering the complexity and cost of Regin’s development, it is likely that this operation is supported by a nation
state. While attribution remains a very difficult problem when it comes to professional attackers such as the ones
behind Regin, certain metadata extracted from the samples is still worth a look.

We have collected timestamps from samples, which are normally put automatically by the development software:

As this information could be easily altered by the developers, it is up to the reader to attempt to interpret this: as
an intentional false flag, or a non-critical indicator left by the developers.

More information about Regin is available to Kaspersky Intelligent Services’ clients. Contact: intelreports@kaspersky.com

Conclusions
For more than a decade, a sophisticated group known as Regin has targeted high-profile entities around
the world with an advanced malware platform. As far as we can tell, the operation is still active, although
the malware may have been upgraded to more sophisticated versions. The most recent sample we have
seen was from a 64-bit infection. This infection was still active in the spring of 2014.

The name Regin is apparently a switched around ‘In Reg’, short for ‘In Registry’, as the malware can store its
modules in the registry. This name and the detections first appeared in anti-malware products around March
2011.

In some ways the platform reminds us of another sophisticated malware: Turla (http://securelist.com/analysis/
publications/65545/the-epic-turla-operation/). Some similarities include the use of virtual file systems and the
deployment of communication drones to bridge networks together. Yet through their implementation, coding
methods, plugins, hiding techniques and flexibility, Regin surpasses Turla as one of the most sophisticated
attack platforms we have ever analyzed.

The ability of this group to penetrate and monitor GSM networks is perhaps the most unusual and interesting
aspect of these operations. In today’s world, we have become too dependent on cellphone networks that rely on
ancient communication protocols with little or no security available for the end user. Although all GSM networks
have mechanisms embedded that allow entities such as law enforcement to track suspects, there are other
parties which can gain this ability and then abuse it to launch other types of attacks against mobile users.

Kaspersky Lab products detect modules from the Regin platform as: Trojan.Win32.Regin.gen and Rootkit.Win32.Regin.

If you detect a Regin infection in your network, contact us at: intelservices@kaspersky.com

TLP: GREEN Contact: intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
http://securelist.com/analysis/publications/65545/the-epic-turla-operation/
http://securelist.com/analysis/publications/65545/the-epic-turla-operation/
mailto:intelservices%40kaspersky.com?subject=

24

Technical appendix and indicators of compromise:

Yara rules:

rule apt_regin_vfs {
meta:

copyright = "Kaspersky Lab"
 description = "Rule to detect Regin VFSes"
 version = "1.0"
 last_modified = "2014-11-18"

strings:
$a1={00 02 00 08 00 08 03 F6 D7 F3 52}
$a2={00 10 F0 FF F0 FF 11 C7 7F E8 52}
$a3={00 04 00 10 00 10 03 C2 D3 1C 93}
$a4={00 04 00 10 C8 00 04 C8 93 06 D8}

condition:
($a1 at 0) or ($a2 at 0) or ($a3 at 0) or ($a4 at 0)

}
rule apt_regin_dispatcher_disp_dll {
meta:

copyright = "Kaspersky Lab"
 description = "Rule to detect Regin disp.dll dispatcher"
 version = "1.0"
 last_modified = "2014-11-18"

strings:
$mz="MZ"
 $string1="shit"
 $string2="disp.dll"
 $string3="255.255.255.255"
 $string4="StackWalk64"
 $string5="imagehlp.dll"

condition:
($mz at 0) and (all of ($string*))

}
rule apt_regin_2013_64bit_stage1 {
meta:

copyright = "Kaspersky Lab"
 description = "Rule to detect Regin 64 bit stage 1 loaders"
 version = "1.0"
 last_modified = "2014-11-18"
 filename="wshnetc.dll"
 md5="bddf5afbea2d0eed77f2ad4e9a4f044d"
 filename="wsharp.dll"
 md5="c053a0a3f1edcbbfc9b51bc640e808ce"

strings:
$mz="MZ"

$a1="PRIVHEAD"
$a2="\\\\.\\PhysicalDrive%d"
$a3="ZwDeviceIoControlFile"

condition:
($mz at 0) and (all of ($a*)) and filesize < 100000

}

TLP: GREEN Contact: intelreports@kaspersky.com

25

rule apt_regin_2011_32bit_stage1 {
meta:

copyright = "Kaspersky Lab"
 description = "Rule to detect Regin 32 bit stage 1 loaders"
 version = "1.0"
 last_modified = "2014-11-18"

strings:
$key1={331015EA261D38A7}
$key2={9145A98BA37617DE}
$key3={EF745F23AA67243D}
$mz="MZ"

condition:
($mz at 0) and any of ($key*) and filesize < 300000

}
rule apt_regin_rc5key {
meta:

copyright = "Kaspersky Lab"
 description = "Rule to detect Regin RC5 decryption keys"
 version = "1.0"
 last_modified = "2014-11-18"

strings:
$key1={73 23 1F 43 93 E1 9F 2F 99 0C 17 81 5C FF B4 01}
$key2={10 19 53 2A 11 ED A3 74 3F C3 72 3F 9D 94 3D 78}

condition:
any of ($key*)

}

MD5s:
Stage 1 files, 32 bit:

06665b96e293b23acc80451abb413e50
187044596bc1328efa0ed636d8aa4a5c
1c024e599ac055312a4ab75b3950040a
2c8b9d2885543d7ade3cae98225e263b
4b6b86c7fec1c574706cecedf44abded
6662c390b2bbbd291ec7987388fc75d7
b269894f434657db2b15949641a67532
b29ca4f22ae7b7b25f79c1d4a421139d
b505d65721bb2453d5039a389113b566
26297dc3cd0b688de3b846983c5385e5
ba7bb65634ce1e30c1e5415be3d1db1d
bfbe8c3ee78750c3a520480700e440f8
d240f06e98c8d3e647cbf4d442d79475
ffb0b9b5b610191051a7bdf0806e1e47

Unusual stage 1 files apparently compiled from various public source codes merged with malicious code:

01c2f321b6bfdb9473c079b0797567ba
47d0e8f9d7a6429920329207a32ecc2e
744c07e886497f7b68f6f7fe57b7ab54
db405ad775ac887a337b02ea8b07fddc

TLP: GREEN Contact: intelreports@kaspersky.com

26

Stage 1, 64-bit system infection:

bddf5afbea2d0eed77f2ad4e9a4f044d
c053a0a3f1edcbbfc9b51bc640e808ce
e63422e458afdfe111bd0b87c1e9772c

Stage 2, 32 bit:

18d4898d82fcb290dfed2a9f70d66833
b9e4f9d32ce59e7c4daf6b237c330e25

Stage 2, 64 bit:

d446b1ed24dad48311f287f3c65aeb80

Stage 3, 32 bit:

8486ec3112e322f9f468bdea3005d7b5
da03648948475b2d0e3e2345d7a9bbbb

Stage 4 32 bit:

1e4076caa08e41a5befc52efd74819ea
68297fde98e9c0c29cecc0ebf38bde95
6cf5dc32e1f6959e7354e85101ec219a
885dcd517faf9fac655b8da66315462d
a1d727340158ec0af81a845abd3963c1

Stage 4 64 bit:

de3547375fbf5f4cb4b14d53f413c503

Note: Stages 2,3 and 4 do not appear on infected systems as real files on disk. Hashes are provided for
research purposes only.

Registry branches used to store malware stages 2 and 3:
•	 \REGISTRY\Machine\System\CurrentControlSet\Control\RestoreList

•	 \REGISTRY\Machine\System\CurrentControlSet\Control\Class\{39399744-44FC-AD65-474B-E4DDF-
8C7FB97}

•	 \REGISTRY\Machine\System\CurrentControlSet\Control\Class\{3F90B1B4-58E2-251E-6FFE-
4D38C5631A04}

•	 \REGISTRY\Machine\System\CurrentControlSet\Control\Class\{4F20E605-9452-4787-B793-
D0204917CA58}

•	 \REGISTRY\Machine\System\CurrentControlSet\Control\Class\{9B9A8ADB-8864-4BC4-8AD5-
B17DFDBB9F58}

C&C IPs:
61.67.114.73 Taiwan, Province Of China Taichung Chwbn

202.71.144.113 India Chetput Chennai Network Operations (team-m.co)

203.199.89.80 India Thane Internet Service Provider

194.183.237.145 Belgium Brussels Perceval S.a.

TLP: GREEN Contact: intelreports@kaspersky.com

27

VFS RC5 decryption algorithm
This algorithm is used throughout the code and is referenced as RC5 in the document, although the implemen-
tation and the way the cipher is invoked is specific to Regin.

The implementation in C++ follows:

void RC5Decrypt(uint8_t* rc5Key, uint8_t* data, size_t len)
{

uint8_t iv[8];
rc5_ctx_t ctx;
uint8_t* encrypted;
size_t encryptedLen;

rc5_init(rc5Key, 128, 20, &ctx);
memcpy(iv, data, 8);
encrypted = data + 8;
encryptedLen = len - 8;
if (encryptedLen % 8)
{

uint8_t ivLocal[8];
if (encryptedLen < 8)

memcpy(ivLocal, iv, 8);
else

memcpy(ivLocal, encrypted + encryptedLen - (encryptedLen % 8) - 8, 8);
rc5_enc(ivLocal, &ctx);
for (size_t idx = 0; idx < (encryptedLen % 8); idx++)

encrypted[idx + encryptedLen - (encryptedLen % 8)] ^= ivLocal[idx];
}
if (encryptedLen / 8 > 1)
{

for (ssize_t blockIdx = (encryptedLen / 8) - 1; blockIdx > 0; blockIdx--)
{
rc5_dec(encrypted + blockIdx*8, &ctx);
for (size_t idx = 0; idx < 8; idx++)
encrypted[blockIdx*8 + idx] ^= encrypted[(blockIdx-1)*8 + idx];
}

}
if (encryptedLen / 8 > 0)
{
rc5_dec(encrypted, &ctx);
for (size_t idx = 0; idx < 8; idx++)
encrypted[idx] ^= iv[idx];
}

}

TLP: GREEN Contact: intelreports@kaspersky.com

Kaspersky Lab HQ

39A/3 Leningradskoe Shosse
Moscow, 125212
Russian Federation

more contact details

Tel: +7-495-797-8700
Fax: +7-495-797-8709

E-mail: info@kaspersky.com
Website: www.kaspersky.com

http://www.kaspersky.com/about/contactinfo/contacts_global_hq
mailto:info%40kaspersky.com?subject=
http://www.kaspersky.com

