RS∧[°]Conference2016

San Francisco | February 29 – March 4 | Moscone Center

SESSION ID: TECH-T09

RS

Smart Megalopolises. How Safe and Reliable Is Your Data?

Global Research and Analytics Team, Kaspersky Lab @Legezo

Megalopolises are changing fast

The plan for today

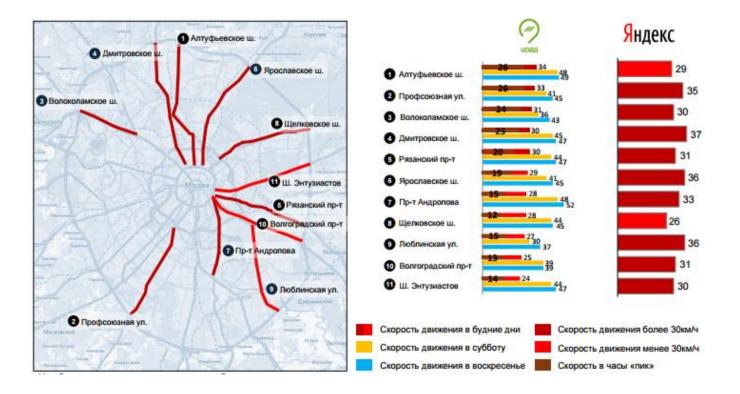
- Smart cities: Sensors' role
- Reconnaissance: Vendors, locations, etc.
- Sensors' functionality: Interfaces and data
- Firmware: The Holy Grail of embedded
- Automation: Let's send some bytes
- Smart cities: Outside sensors

Why cities need all this stuff?

- Smart cities: Sensors' role
- Reconnaissance: Vendors, locations, etc.
- Sensors' functionality: Interfaces and data
- Firmware: The Holy Grail of embedded
- Automation: Let's send some bytes
- Smart cities: Outside sensors

#RSAC

Why do cities have be smart?



- Investments
- Staff
- Infrastructure
- Data centers
- Operation center

KASPERSKY[®]

Raw data for planning

KASPERSKY

...And for traffic management

- Possible to use for the traffic lights
- Counting vehicles number and change timings
- Counting pedestrians as well

Radars are the source of such data

The first phase

- Smart cities: Sensors' role
- Reconnaissance: Vendors, locations, etc.
- Sensors' functionality: Interfaces and data
- Firmware: The Holy Grail of embedded
- Automation: Let's send some bytes
- Smart cities: Outside sensors

Appearance is a great help

KASPERSKY

.. Any IDs you can get are also

btid [PK] text	friendly text	latitude real	longitude real	vendor text
00:01:95:18:A7:B9	RTMS G4 [17553]	55.8257	37.5268	Sena Technologies, Inc.
00:01:95:18:A8:82	RTMS G4 [17631]	55.8258	37.5268	Sena Technologies, Inc.
00:01:95:1A:84:90		55.8243	37.5064	Sena Technologies, Inc.
00:01:95:1A:84:9E	RTMS G4 [17243]	55.8228	37.5132	Sena Technologies, Inc.
00:01:95:1A:84:A2		55.8243	37.5064	Sena Technologies, Inc.
00:01:95:1A:84:AE	RTMS G4 [17232]	55.8226	37.5137	Sena Technologies, Inc.
00:01:95:1A:84:B5		55.8226	37.5137	Sena Technologies, Inc.
00:01:95:1A:84:C7	RTMS G4 [17185]	55.8209	37.504	Sena Technologies, Inc.
00:01:95:1A:85:5C	RTMS G4 [17245]	55.8332	37.5236	Sena Technologies, Inc.

• MACs

#RSAC

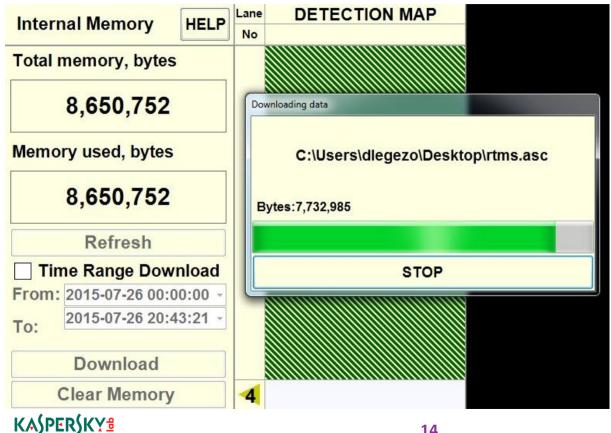
- Names
- Any IDs

What we are gathering?

- Smart cities: Sensors' role
- Reconnaissance: Vendors, locations, etc.
- Sensors' functionality: Interfaces and data
- Firmware: The Holy Grail of embedded
- Automation: Let's send some bytes
- Smart cities: Outside sensors

KASPERSKY

#RSAC


Look, interfaces

RTMS Setup Utility		Rev4.7.2	<u>- 🗆 ×</u>			
Communic	ation HELF	P RTMS Port Configuration				
PC Serial	•	Port1	Port2			
		Bau	udrate			
Serial Port	COM10 -	9600	- 2400 -			
		• RS232	O RS232			
Baudrate	9600 -	O RS485	• RS422			
	landshake	Send				
Timeout, ms	500					

#RSAC

KASPERSKY

And a lots of data on-board

RSAConference2016

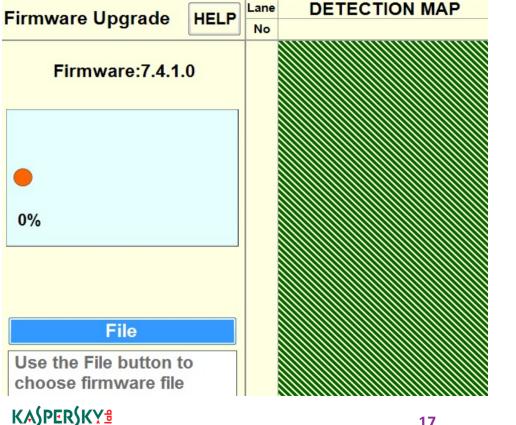
#RSAC

What's inside the data?

#RSAC	
	_

12 02 2015 18:20:00)				
MESSAGE NO. 220	VOLUME:	4	43	31	1
	REG:	0	13	16	0
	MED:	1	6	6	0
	LARGE:	0	0	0	0
	TRUCK:	0	1	1	0
	XLARGE:	1	0	2	0
STATION ID. 30105 (OCCUPANCY:	0.6	3.7	6.1	0.1
FWDLK SPEED ? SID	DEFRD SPD:	89	78	47	75
S	SPEED 85%:	90	81	49	75
10 00 0015 10.05.00					
12 02 2015 18:25:00			50		_
MESSAGE NO. 221	VOLUME:	11	59	33	5
	REG:	0	21	13	2
	MED:	0	9	7	1
	LARGE:	1	2	2	0
	TRUCK:	0	1	0	1
	XLARGE:	4	0	1	0

- Vehicle type
- Number of vehicles
- Median speed
- Station occupancy


The Holy Grail

- Smart cities: Sensors' role
- Reconnaissance: Vendors, locations, etc.
- Sensors' functionality: Interfaces and data
- Firmware: The Holy Grail of embedded
- Automation: Let's send some bytes
- Smart cities: Outside sensors

Can we add some functions?

- Through interface
- Debugger? •
- Commands?
- What is format?

Format looks like iHex or SREC

CDSP 06067400> :0000000203DA000772B98DE367C63508B20497D1F837C0D1F1D66E8425BF147E4E6FEF0 :00010000203DA020A5B13175A3FAA20A77500B88399034E3FEF2164A26787449D12ED981 :00020000203DA0405AC53CC0D1F34DA16A36CD0EC87E2D8431AA31D655C50E2C0D9B052E :00030000203DA060C85E8A028F1D2BDF5A7B2560FE5909DA1F2ACEB5391549E9C8C3CE50 :00040000203DA080BFA8FA2481878A35E41DC35429CEE585746BB2EDC4BB1AE3A428D753 :00050000203DA0A0D5045BF3C3FA8A6E14CB8D5FE8C74F46F2F87501CC25D1B31A4CC1E8 :00060000203DA0C094B4D14B6D8B6D50264FB5C8DEA50B019D61EEF9EB816D145901DEFF

<MPU 05DC7400>

:0000400000093291A3CC4D053D7CCEFFE8DF6243802E615674EF614D3E61D850E2607B7F59AA3DA64D293 :0001400000407979A6FC02AD0743CE902AD3F59E3CF3A92820473162331CD249984AD09FB23062CA401833 :00024000008056180672B7635D44FF423403AAD16F8BF133A77DD626CB8A0CF3E758EE87F9F3A7C91A4EC0 :0003400000C0B9F6DD37F262979315C85964D11DDEF2F5F6976404336F996F6D00B28E32026522F8F7D023 :0004400001007B47E3239AF61FD56D8F69A614A49E674C438550387A6582FF7EAE499B95143B79B5708579 :0005400001400E55442BA3C20B6F38E49D8E23CBDECC7147C96DD33C94757A617A2374F0D3188033E47482 :000640000180FF77C9575B7FF42BA365D1E06A2AB8280A911F87F38E3040A30440FC120D4B02EE71E70F73

But for which controller is it?

")→<ÄÐS×Ìïþ⊠ö\$80æ§gNö¶Óæ⇔…Ĵ&•·õš£ÚdÒ—⊡°HC→Ú=zC-Ã;[æS*¶z ',ƒ¶Š∟Æ■▲²yy¦ü0-•CÎ⊡*Óõž<ó©(G1b3∟ÒI~Jŧ 7í♥ĴÇ£Ú€I¥⊡ÿÒ∟ÀV↑♠r·c]DÿB4♥ªÑo<ñ3§}Ö&ËŠ♀óçXî‡ùó§É→NÀt͆Ôî>¥ÂÆÉÌjßuVYq↓#€O►ÞrçZ↑" ¹öÝ7òb-^#j{Gã#šö▼Õm⊡i¦¶¤žgLC…P8ze,ÿ~®I>•¶;yµp…uëi'ÎN8dË,¶⊡ÙÆ?<îD~3Oí‱"|,¶G▲…ĴUD+£Âđo8ä⊡Ž#ËÞÌqGÉmÓ<"uza '▼‡óŽ0@£♦@ü\$

K®îqç¤s…Ø:0uøQb♬2@t8÷Š¢P½Úü"èC©∟°´▼‡B▼♠ÌsÎo'Î3,Í.^w¤hSl# È>:>⁻£Ií⊡þ€⊡∆ÃpÛ ©qµp~ÛP»O…f¡á×úZ¶?*/fÉèÁðû!⊡»y↔⊲å€Ëêø¾ÂfÊw♣♀ÚDY@ÞD Û#Ô2♦Q♠ÊË•ÔZf¬žŒ⊲w‡ãd@Kª' SÛ®‼↑FQªŽ¿ç¢?↓™↔¿〕 …ö♣:¤>tø¤←ã"<aPÆ|I⇔': ⊉º l~ñR¶¦t6fÑ!_v<ŠÜ}•ÉÎÚ⇔!eF%,−omHÌ∟❷ õ↑@∟ÓñŽàðîã↓"5ÁÉÊKØdŠ<mark>∙</mark>=Ûéµï§ÿ+⊿

³—?ìGxà*E,"žV|¥Ul¾e⊈@Y⋅►±y▼"

òÖË=§•0!+•)▼Œ-M‰oq»¼+n·⊡ÆÕüPC³;(Þ8&→"" XyôrÉxÌŒ>9¿9tZ,;Ô¹}øORÓ‼∟Ð←↓ÀÇaÍa éJZZ"Ö⇔(Ïb‼œUÙU ²◀-¼_ð→Hñ¾'|ð׌§[-\$w⊡t)¼Å^»ŒÝb…ªg9cøLÐ|+P[◆ÝýlÛ⇔Gqð wÖ;ëxÖQøõ#‡ñ¦ÿÖ;ž6½ê~"öp·'pÒØ€hl«PB↓OcÖzä ¾SY%ñF6L>»∟÷ê⊡69Ý8?T×_´ÏxŠÜëØ=@'7ù^⊣∟•ĐìJøªÉ®Ô6•"t↓š— ¿ÌC′‰'£€Õ2ýi{²5È}ùü1sO',⊡•Ùû5>∟5♥£ @•¤pJ ïü⊡]-L⇔ÚY©-¼G×ð†"‡äï…µÒ=→°ýÆßÎd…<êRM‰t¼ûLæýfÎËÓÏêRŒÝ½ VlªS→u÷â" %,mVÁ^©Áÿ-"é®ÇIì^Ûnœúë@€←àü∟Œý áðÉo3»ž"@H◆7F9%d_¬∟.>2DtY,y,•C^ømí◀jò¾¹øfØ⇔♀¾G▲Mzù§_Š‼<=Y.=>ôð¿â«D#Ç,Á¢¢é7<\$Ø>▲ap¤H¹ž'↔B;⊈9œùñĿ Ø÷·'\$▲ĐPÞSÂW©öš9FÎÅ¡rÒ♠⊡~F<mark>°</mark>< q-ñŸ"jekßà2"ãÉ|Û(gñ#måÅ{~zò♠WDõà=(,lù6ü«-ž þ X wm;⊡}‡u!¾ÅÎ♥Hªyi2 ¦←\$Öád⊡

KASPERSKY[®]

LinkedIn isn't only for HR

Hi Denis,

No, it's a not secret RTMS G4 used duo of DSP and MCU. TI TMS320F2811 (signal processing) and Atmel ATMEGA128 (communication and transceiver control). Wavetronix opted for DSP and FPGA solution. They started with TI C667X family and recently they moved to Analog Devices to lower power consumption. FPGA are Xilinx, various families depending on model.

KASPERSKY 1

#RSAC

..but it happens anyway

RSAConference2016

Yes, both DSP and MCU use proprietary encryption algorithm based on 2 tables of 256 keys (DSP and MCu use different pseudo random tables).

- For me in a blackbox mode it looks like dead end
- But does it means dead end at all?
- Of course not!

Even with the stock firmware..

- Smart cities: Sensors' role
- Reconnaissance: Vendors, locations, etc.
- Sensors' functionality: Interfaces and data
- Firmware: The Holy Grail of embedded
- Automation: Let's send some bytes
- Smart cities: Outside sensors

#RSAC

Reconnaissance first

#RSAC

::Check for BT devices with given part of the name btdiscovery | find "%SearchName%" > %BufferFile%

::We found something interesting for /f %%i in ("%BufferFile%") do set size=%%~zi if %size% gtr 0 (::Get device ID set /p DeviceFullInfo=<%BufferFile%</pre>

::Pair devices btpair -padmin -b%DeviceFullInfo:~0,19%

::Let's save in result file
echo %date% %time% >> %OutputFile%
type %BufferFile% >> %OutputFile%

::And add corresponding GPS data to it adb shell dumpsys location | find "acc=" > %GPSFile% type %GPSFile% >> %OutputFile%

::Send all needed bytes C:\Users\dlegezo\rtms.exe

::Unpair device btpair -u -b%DeviceFullInfo:~0,19%

goto start

- I started with script + C
- Bluetooth tools
- adb to get GPS from phone
- C code for sending
- What to send?

Commands are partly known

Byte	0	2	3 4	4	6
-	FFAA	D7	02	ID	Checksum

Figure 5-7: Vehicle Classification Request Format

Table 5-4: Vehicle Classification Request Byte Descriptions

Byte	Item/Value	Description
0-1	FFAA	Two bytes (four hexadecimal digits) indicating the start of the frame.
2	D7	One byte (two hexadecimal digits) indicating this is a Vehicle Classification request.
3	02	One byte (two hexadecimal digits) indicating the length of the Data field (2 bytes).

KASPERSKY

So we can automate


```
#include "stdafx.h"
HANDLE hPort:
HANDLE hResponseFile:
LPCWSTR strPortName = TEXT("\\\.\\COM30");
LPCWSTR strResponseFileName = TEXT("C:/Users/dlegezo/Documents/output.txt");
DCB PortState = { 0 };
int GetPortState ()
                                                                                                                       FF A1 05 A4 1C 10 00 00 D0
        if ((GetCommState(hPort, &PortState) == 0))
                printf("Get configuration port has a problem: %d\n", GetLastError());
                return 1:
                                                                                                               FF AA 4F 0A 00 01 00 00 00 00 00 00 04 20 00 25
        return 0;
                                                                                               DWORD dwBytesRead;
                                                                                               bvte pavload[9]:
                                                                                               int \mathbf{i} = 0:
int SetPortState()
                                                                                               payload[0] = 0xFF;
                                                                                               payload[1] = 0xA1;
        PortState.BaudRate = 9600;
                                                                                               payload[2] = 0x05;
        PortState.ByteSize = 8;
                                                                                               payload[3] = 0xA4;
        PortState.fParity = 0:
                                                                                               payload[4] = 0x1C;
        PortState.StopBits = 1;
                                                                                               payload[5] = 0x11;
                                                                                               payload[6] = 0 \times 00;
        if (!SetCommState(hPort, &PortState))
                                                                                               payload[7] = 0 \times 00;
                                                                                               payload[8] = 0xD1;
                printf("Failed to Set Comm State: %d\n", GetLastError());
                return 1;
                                                                                               WriteFile(hPort, payload, 9, &dwBytesRead, NULL);
        return 0;
                                                                                               return 0;
```

KASPERSKY

Sensor will answer

0000000000000000	CC CC	CC CC	CC FF AA	80	18 75 99 36 0B C1 F6 00 ÌÌÌÌÌÿª€↑u™6đÁö
0000000010:	10 19	04 24	09 15 04	3F	01 2C 89 00 00 00 00 00 ►↓♦\$o§♦?@,‱
0000000020:	00 04	6E FF	AA 10 0A	75	99 00 08 00 2C 00 18 00 ♦nÿª⊨⊠u™ <mark>9</mark> , ↑
000000030:	25 01	7F FF	AA 11 0A	75	99 00 0E 00 23 00 1B 00 %©∆ÿª≪œu™ ♬ # ↔
0000000040:	30 01	8A FF	AA 12 0A	75	99 00 5D 00 51 00 4C 00 0⊕Šÿª\$seu™]QL
0000000050:	44 02	4C FF	AA 14 0A	75	99 00 01 00 11 00 08 00 D 0 Lÿª 9 ⊠u™ © ⊲ •
0000000060:	07 01	2F FF	AA 15 ØA	75	99 00 01 00 03 00 04 00 •⊕/ÿª§zu™ ⊕ ♥ ♦
0000000070:	0D 01	23 FF	AA 16 0A	75	99 00 03 00 00 00 01 00 ♪©#ÿª -z u™ ♥ ©
000000080:	05 01	17 FF	AA 17 ØA	75	99 00 00 00 00 00 00 00 ♣⊕⊈ÿª⊈su™
000000090:	01 01	ØF FF	AA 18 ØA	75	99 00 02 00 00 00 02 00 ⊜⊜⇔ÿª↑≊u™ 🖲 😁
00000000A0:	00 01	12 FF	AA 1F 0A	75	99 00 5E 00 55 00 50 00 ©\$ÿª v≊ u™^UP
00000000B0:	4A 02	5B FF	AA 81 03	75	99 36 01 44 44 44 44 44 J@[ÿª⊠♥u™6@DDDDD
000000000000000000000000000000000000000	44 44	44			DDD

KASPERSKY

What about the small DDoS?

#RSAC

RSAConference2016

RTMS STAT. MESSAGES ZONE: 1 2 SPEED IN Km/h.Occupancy 6 ft loop normalized.

pν				RTMS_ID	Lane	Class	<pre>Speed[km/h]</pre>	Length[m]	Dwell
pv									
pv	28 0	7 2015	10:10:45.320	30116	2	Sm	53	3.4	37
pv	28 0	7 2015	10:10:48.450	30116	2	Med	50	5.4	53
pv	28 0	7 2015	10:10:51.230	30116	2	Med	49	6.2	60

- Driving by, changing settings
- Time: all traffic at night
- Types: all traffic trucks

Python + PostgreSQL seems better

if __name__=="__main__":

```
# In case if I need to clean the list of sensors
#mod postgresgl.pg clear db(rtms conn)
# Connect to Postgresgl
pg conn = mod postgresql.pg connect db()
gps session = mod gps.gps open()
# The main device searching loop
try:
    while True:
        bt devices = mod bt.bt discover()
        # print('cycle')
        if bt devices != []:
            print 'found something!'
            for bt_device in bt_devices:
                # mod bt.bt_connect(bt_device)
                # mod bt.bt send(bt device)
                pg_cursor_sel = mod_postgresql.pg_get_existing(pg_conn, 'btid', 'tab_rtms')
                rtms sensors = mod postgresql.pg get_existing_list(pg_cursor_sel)
                pg_cursor_ins = mod_postgresql.pg_add_new(pg_conn, rtms_sensors, bt_devices, gps_session)
except KeyboardInterrupt:
    # Cleaning and exit
    qps session.close()
    mod postgresql.pg close db(pg conn, pg cursor sel, pg cursor ins)
```

KASPERSKY

#RSAC

Resolve vendor and address offline

btid [PK] text	friendly text	latitude real	longitude real	vendor text	place text
00:01:95:18:A7:B9	RTMS G4 [17553]	55.8257	37.5268	Sena Technologies, Inc.	b-r Matrosa Zheleznyaka, 3, Mo
00:01:95:18:A8:82	RTMS G4 [17631]	55.8258	37.5268	Sena Technologies, Inc.	b-r Matrosa Zheleznyaka, 2/37,
00:01:95:1A:84:90		55.8243	37.5064	Sena Technologies, Inc.	Staropetrovskiy pr-d, 13, Mosk
00:01:95:1A:84:9E	RTMS G4 [17243]	55.8228	37.5132	Sena Technologies, Inc.	ul. Zoi i Aleksandra Kosmodemy
00:01:95:1A:84:A2		55.8243	37.5064	Sena Technologies, Inc.	Staropetrovskiy pr-d, 13, Mosk
00:01:95:1A:84:AE	RTMS G4 [17232]	55.8226	37.5137	Sena Technologies, Inc.	6-y Novopodmoskovnyy per., 3,
00:01:95:1A:84:B5		55.8226	37.5137	Sena Technologies, Inc.	6-y Novopodmoskovnyy per., 3,
00:01:95:1A:84:C7	RTMS G4 [17185]	55.8209	37.504	Sena Technologies, Inc.	4-y Novopodmoskovnyy per., 2A,
00:01:95:1A:85:5C	RTMS G4 [17245]	55.8332	37.5236	Sena Technologies, Inc.	Sobolevskiy pr-d, 24, Moskva,

What to do further and else?

- Smart cities: Sensors' role
- Reconnaissance: Vendors, locations, etc.
- Sensors' functionality: Interfaces and data
- Firmware: The Holy Grail of embedded
- Automation: Let's send some bytes
- Smart cities: Outside sensors

#RSAC

Side effects

address text	encry text		encryption text	latitude double precis	longitude double precis	vendor text
E4:8D:8C:16:59:2A	false	MosGorTrans Fre	e	55.819224478	37.504482877	Routerboard.com
E4:8D:8C:14:27:EC	false	MosGorTrans Fre	e	55.827270805	37.489830855	Routerboard.com
4C:5E:0C:12:78:3E	false	MosGorTrans Fre	e	55.827451809	37.490030114	Routerboard.com
E4:8D:8C:16:59:46	false	MosGorTrans Fre	e	55.827358863	37.489786112	Routerboard.com
E4:8D:8C:16:59:34	false	MosGorTrans Fre	e	55.8285953	37.527522745	Routerboard.com
4C:5E:0C:0B:B6:C0	false	MosGorTrans Fre	e	55.726222301	37.624721599	Routerboard.com
4C:5E:0C:0F:AF:67	false	MosGorTrans Fre	e	55.729355692	37.625430551	Routerboard.com

- Gather Wi-Fi data and filter it with Postgres views
- MACs can be anonymous
- WEP is still alive

Where is always place for fuzzing

Ordinal	Time	Time Diff	Function	Direction	Status	Data	Data (Characters)
00000103	03.08.2015 18:55:59.730	+0.020	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 06 a4 11 00 00 05 dc 96	
00000112	03.08.2015 18:55:59.900	+0.0	IRP_MJ_READ	UP	0x00000000	ff a1 05 a4 1c 11 00 00 d1	
00000113	03.08.2015 18:55:59.920	+0.020	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 92 a4 10 30 30 30 30 34 30.	00004000000
00000115	03.08.2015 18:56:01.430	+1.510	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 92 a4 10 30 30 30 30 34 30	0000400000
00000117	03.08.2015 18:56:02.930	+1.500	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 92 a4 10 30 30 30 30 34 30	0000400000
00000119	03.08.2015 18:56:04.430	+1.500	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 92 a4 10 30 30 30 30 34 30	00004000000
00000128	03.08.2015 18:56:05.057	+0.0	IRP_MJ_READ	UP	0x00000000	ff a1 05 a4	
00000135	03.08.2015 18:56:05.087	+0.0	IRP_MJ_READ	UP	0x00000000	1c 10 00 00 d0	
00000137	03.08.2015 18:56:05.097	+0.010	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 92 a4 10 30 30 30 31 34 30	00014000004
00000139	03.08.2015 18:56:06.677	+1.500	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 92 a4 10 30 30 30 31 34 30	00014000004
00000141	03.08.2015 18:56:09.277	+1.500	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 92 a4 10 30 30 30 31 34 30	00014000004
00000143	03.08.2015 18:56:11.899	+1.520	IRP_MJ_WRITE	DOWN	0x00000000	ff a1 92 a4 10 30 30 30 31 34 30	00014000004
00000151	03.08.2015 18:56:12.249	+0.0	IRP_MJ_READ	UP	0x00000000	ff a1 05	

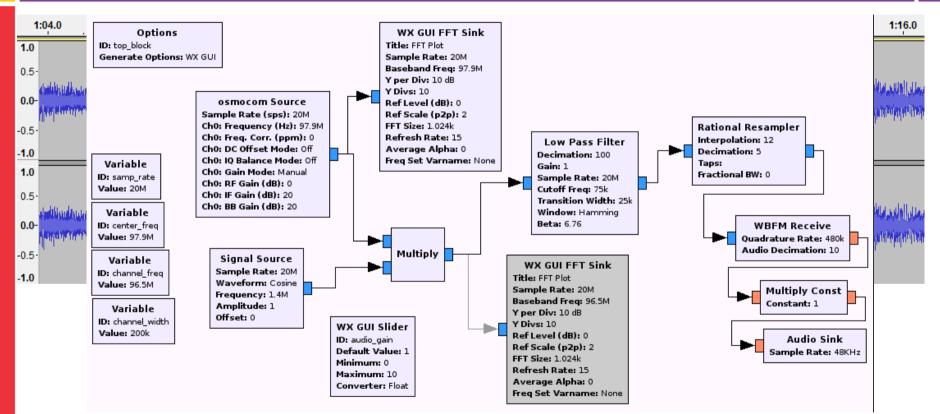
Complete

000113: Write Request (DOWN), 03.08.2015 18:55:59.920 +0.020 (1. Device: Playback) Buffer size: 0x96 bytes

FF A1 92 A4 10 30 30 30 30 34 30 30 30 30 30 30 30 $\ddot{y}_i' \times .0000400000$ 30 39 33 32 39 31 41 33 43 43 34 44 30 35 33 44 093291A3CC4D053D 37 43 43 45 46 46 45 38 44 46 36 32 34 33 38 30 7CCEFFE8DF624380

• Where are undocumented commands

So much other stuff


...even speeding penalties

- Smart cities security perimeter if huge
- So is the surface of attacks
- Different authorities are in charge of the infrastructure

...And tools

KASPERSKY[®]

RSA Conference2016

#RSAC

What to apply?

Change appearance and default names

- Don't rely only on standard authentication
- Cooperate with third-party researches
- Think a little bit like malefactor or hire someone who can
- I know embedded devices vendors with generous bug bounty program. Respect
- Cities also could participate

Smart city infrastructure is visible due to ID

- Kudos to vendor, firmware is strong
- Automation is possible with change of any settings
- Interesting side effects with wireless protocols

Go further!

KASPERSKY B

RSA Conference 2016

Denis Legezo

Denis.Legezo@kaspersky.com